In: Computer Science
Write a c or matlab text code(to be copied ) for Huffman coder and Huffman decoder that asks the user to enter the string and output the Huffman code for every letter
and a code for encoding that will have every letter and its Huffman code and output all the possibilities for the real string.
you must show a screen of an input and the output for both the encoder and the decoder
C code for Huffman Coding-
// C program for Huffman Coding
#include <stdio.h>
#include <stdlib.h>
// This constant can be avoided by explicitly
// calculating height of Huffman Tree
#define MAX_TREE_HT 100
// A Huffman tree node
struct MinHeapNode {
// One of the input characters
char data;
// Frequency of the character
unsigned freq;
// Left and right child of this node
struct MinHeapNode *left, *right;
};
// A Min Heap: Collection of
// min-heap (or Huffman tree) nodes
struct MinHeap {
// Current size of min heap
unsigned size;
// capacity of min heap
unsigned capacity;
// Array of minheap node pointers
struct MinHeapNode** array;
};
// A utility function allocate a new
// min heap node with given character
// and frequency of the character
struct MinHeapNode* newNode(char data, unsigned freq)
{
struct MinHeapNode* temp
= (struct MinHeapNode*)malloc
(sizeof(struct MinHeapNode));
temp->left = temp->right = NULL;
temp->data = data;
temp->freq = freq;
return temp;
}
// A utility function to create
// a min heap of given capacity
struct MinHeap* createMinHeap(unsigned capacity)
{
struct MinHeap* minHeap
= (struct MinHeap*)malloc(sizeof(struct MinHeap));
// current size is 0
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array
= (struct MinHeapNode**)malloc(minHeap->
capacity * sizeof(struct MinHeapNode*));
return minHeap;
}
// A utility function to
// swap two min heap nodes
void swapMinHeapNode(struct MinHeapNode** a,
struct MinHeapNode** b)
{
struct MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// The standard minHeapify function.
void minHeapify(struct MinHeap* minHeap, int idx)
{
int smallest = idx;
int left = 2 * idx + 1;
int right = 2 * idx + 2;
if (left < minHeap->size &&
minHeap->array[left]->
freq < minHeap->array[smallest]->freq)
smallest = left;
if (right < minHeap->size &&
minHeap->array[right]->
freq < minHeap->array[smallest]->freq)
smallest = right;
if (smallest != idx) {
swapMinHeapNode(&minHeap->array[smallest],
&minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
// A utility function to check
// if size of heap is 1 or not
int isSizeOne(struct MinHeap* minHeap)
{
return (minHeap->size == 1);
}
// A standard function to extract
// minimum value node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
struct MinHeapNode* temp = minHeap->array[0];
minHeap->array[0]
= minHeap->array[minHeap->size - 1];
--minHeap->size;
minHeapify(minHeap, 0);
return temp;
}
// A utility function to insert
// a new node to Min Heap
void insertMinHeap(struct MinHeap* minHeap,
struct MinHeapNode* minHeapNode)
{
++minHeap->size;
int i = minHeap->size - 1;
while (i && minHeapNode->freq < minHeap->array[(i
- 1) / 2]->freq) {
minHeap->array[i] = minHeap->array[(i - 1) / 2];
i = (i - 1) / 2;
}
minHeap->array[i] = minHeapNode;
}
// A standard function to build min heap
void buildMinHeap(struct MinHeap* minHeap)
{
int n = minHeap->size - 1;
int i;
for (i = (n - 1) / 2; i >= 0; --i)
minHeapify(minHeap, i);
}
// A utility function to print an array of size n
void printArr(int arr[], int n)
{
int i;
for (i = 0; i < n; ++i)
printf("%d", arr[i]);
printf("\n");
}
// Utility function to check if this node is leaf
int isLeaf(struct MinHeapNode* root)
{
return !(root->left) && !(root->right);
}
// Creates a min heap of capacity
// equal to size and inserts all character of
// data[] in min heap. Initially size of
// min heap is equal to capacity
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int
size)
{
struct MinHeap* minHeap = createMinHeap(size);
for (int i = 0; i < size; ++i)
minHeap->array[i] = newNode(data[i], freq[i]);
minHeap->size = size;
buildMinHeap(minHeap);
return minHeap;
}
// The main function that builds Huffman tree
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int
size)
{
struct MinHeapNode *left, *right, *top;
// Step 1: Create a min heap of capacity
// equal to size. Initially, there are
// modes equal to size.
struct MinHeap* minHeap = createAndBuildMinHeap(data, freq,
size);
// Iterate while size of heap doesn't become 1
while (!isSizeOne(minHeap)) {
// Step 2: Extract the two minimum
// freq items from min heap
left = extractMin(minHeap);
right = extractMin(minHeap);
// Step 3: Create a new internal
// node with frequency equal to the
// sum of the two nodes frequencies.
// Make the two extracted node as
// left and right children of this new node.
// Add this node to the min heap
// '$' is a special value for internal nodes, not used
top = newNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
insertMinHeap(minHeap, top);
}
// Step 4: The remaining node is the
// root node and the tree is complete.
return extractMin(minHeap);
}
// Prints huffman codes from the root of Huffman Tree.
// It uses arr[] to store codes
void printCodes(struct MinHeapNode* root, int arr[], int top)
{
// Assign 0 to left edge and recur
if (root->left) {
arr[top] = 0;
printCodes(root->left, arr, top + 1);
}
// Assign 1 to right edge and recur
if (root->right) {
arr[top] = 1;
printCodes(root->right, arr, top + 1);
}
// If this is a leaf node, then
// it contains one of the input
// characters, print the character
// and its code from arr[]
if (isLeaf(root)) {
printf("%c: ", root->data);
printArr(arr, top);
}
}
// The main function that builds a
// Huffman Tree and print codes by traversing
// the built Huffman Tree
void HuffmanCodes(char data[], int freq[], int size)
{
// Construct Huffman Tree
struct MinHeapNode* root
= buildHuffmanTree(data, freq, size);
// Print Huffman codes using
// the Huffman tree built above
int arr[MAX_TREE_HT], top = 0;
printCodes(root, arr, top);
}
// Driver program to test above functions
int main()
{
char arr[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
int freq[] = { 5, 9, 12, 13, 16, 45 };
int size = sizeof(arr) / sizeof(arr[0]);
HuffmanCodes(arr, freq, size);
return 0;
}
C++ code for Huffman decoding-
// C++ program to encode and decode a string using
// Huffman Coding.
#include <bits/stdc++.h>
#define MAX_TREE_HT 256
using namespace std;
// to map each character its huffman value
map<char, string> codes;
// to store the frequency of character of the input data
map<char, int> freq;
// A Huffman tree node
struct MinHeapNode
{
char data; // One of the input characters
int freq; // Frequency of the character
MinHeapNode *left, *right; // Left and right child
MinHeapNode(char data, int freq)
{
left = right = NULL;
this->data = data;
this->freq = freq;
}
};
// utility function for the priority queue
struct compare
{
bool operator()(MinHeapNode* l, MinHeapNode* r)
{
return (l->freq > r->freq);
}
};
// utility function to print characters along with
// there huffman value
void printCodes(struct MinHeapNode* root, string str)
{
if (!root)
return;
if (root->data != '$')
cout << root->data << ": " << str <<
"\n";
printCodes(root->left, str + "0");
printCodes(root->right, str + "1");
}
// utility function to store characters along with
// there huffman value in a hash table, here we
// have C++ STL map
void storeCodes(struct MinHeapNode* root, string str)
{
if (root==NULL)
return;
if (root->data != '$')
codes[root->data]=str;
storeCodes(root->left, str + "0");
storeCodes(root->right, str + "1");
}
// STL priority queue to store heap tree, with respect
// to their heap root node value
priority_queue<MinHeapNode*, vector<MinHeapNode*>,
compare> minHeap;
// function to build the Huffman tree and store it
// in minHeap
void HuffmanCodes(int size)
{
struct MinHeapNode *left, *right, *top;
for (map<char, int>::iterator v=freq.begin(); v!=freq.end();
v++)
minHeap.push(new MinHeapNode(v->first, v->second));
while (minHeap.size() != 1)
{
left = minHeap.top();
minHeap.pop();
right = minHeap.top();
minHeap.pop();
top = new MinHeapNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
minHeap.push(top);
}
storeCodes(minHeap.top(), "");
}
// utility function to store map each character with its
// frequency in input string
void calcFreq(string str, int n)
{
for (int i=0; i<str.size(); i++)
freq[str[i]]++;
}
// function iterates through the encoded string s
// if s[i]=='1' then move to node->right
// if s[i]=='0' then move to node->left
// if leaf node append the node->data to our output string
string decode_file(struct MinHeapNode* root, string s)
{
string ans = "";
struct MinHeapNode* curr = root;
for (int i=0;i<s.size();i++)
{
if (s[i] == '0')
curr = curr->left;
else
curr = curr->right;
// reached leaf node
if (curr->left==NULL and curr->right==NULL)
{
ans += curr->data;
curr = root;
}
}
// cout<<ans<<endl;
return ans+'\0';
}
// Driver program to test above functions
int main()
{
string str = "geeksforgeeks";
string encodedString, decodedString;
calcFreq(str, str.length());
HuffmanCodes(str.length());
cout << "Character With there Frequencies:\n";
for (auto v=codes.begin(); v!=codes.end(); v++)
cout << v->first <<' ' << v->second
<< endl;
for (auto i: str)
encodedString+=codes[i];
cout << "\nEncoded Huffman data:\n" << encodedString
<< endl;
decodedString = decode_file(minHeap.top(), encodedString);
cout << "\nDecoded Huffman Data:\n" << decodedString
<< endl;
return 0;
}