In: Economics
24. Maximize
π = 36x1 + 28x2 + 32 x3
Subject to
2x1 + 2x2 + 8x3≤ 3
3x1 + 2x2 + 2x3≤ 4
x1, x2, x3≥ 0
25. Write down the economic interpretations of the dual of the problem (24).
24 & 25
The problem is converted to canonical form by adding slack,
surplus and artificial variables as appropiate
1. As the constraint-1 is of type '≤' we should add slack variable
S1
2. As the constraint-2 is of type '≤' we should add slack variable
S2
After introducing slack variables
|
||||||||||||||||||||||||||||||||||
subject to | ||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
and x1,x2,x3,S1,S2≥0 |
Iteration-1 | Cj | 36 | 28 | 32 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | S1 | S2 | MinRatio XBx1 |
S1 | 0 | 3 | 2 | 2 | 8 | 1 | 0 | 32=1.5 |
S2 | 0 | 4 | (3) | 2 | 2 | 0 | 1 | 43=1.3333→ |
Z=0 | Zj | 0 | 0 | 0 | 0 | 0 | ||
Zj-Cj | -36↑ | -28 | -32 | 0 | 0 |
Negative
minimum Zj-Cj
is
-36 and its column index
is 1. So,
the entering variable is
x1.
Minimum
ratio is 1.3333
and its row
index is 2. So,
the leaving basis variable is
S2.
Entering =x1, Departing =S2, Key Element =3
R1(old) = | 3 | 2 | 2 | 8 | 1 | 0 |
R2(new) = | 1.3333 | 1 | 0.6667 | 0.6667 | 0 | 0.3333 |
2×R2(new) = | 2.6667 | 2 | 1.3333 | 1.3333 | 0 | 0.6667 |
R1(new)=R1(old) - 2R2(new) | 0.3333 | 0 | 0.6667 | 6.6667 | 1 | -0.6667 |
R2(old) = | 4 | 3 | 2 | 2 | 0 | 1 |
R2(new)=R2(old)÷3 | 1.3333 | 1 | 0.6667 | 0.6667 | 0 | 0.3333 |
Iteration-2 | Cj | 36 | 28 | 32 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | S1 | S2 | MinRatio XBx3 |
S1 | 0 | 0.3333 | 0 | 0.6667 | (6.6667) | 1 | -0.6667 | 0.33336.6667=0.05→ |
x1 | 36 | 1.3333 | 1 | 0.6667 | 0.6667 | 0 | 0.3333 | 1.33330.6667=2 |
Z=48 | Zj | 36 | 24 | 24 | 0 | 12 | ||
Zj-Cj | 0 | -4 | -8↑ | 0 | 12 |
Negative
minimum Zj-Cj
is
-8 and its column index
is 3. So,
the entering variable is
x3.
Minimum
ratio is 0.05
and its row
index is 1. So,
the leaving basis variable is
S1.
∴ The pivot element is 6.6667.
Entering
=x3, Departing
=S1, Key Element
=6.6667
R1(old) = | 0.3333 | 0 | 0.6667 | 6.6667 | 1 | -0.6667 |
R1(new)=R1(old)÷6.6667 | 0.05 | 0 | 0.1 | 1 | 0.15 | -0.1 |
R2(old) = | 1.3333 | 1 | 0.6667 | 0.6667 | 0 | 0.3333 |
R1(new) = | 0.05 | 0 | 0.1 | 1 | 0.15 | -0.1 |
0.6667×R1(new) = | 0.0333 | 0 | 0.0667 | 0.6667 | 0.1 | -0.0667 |
R2(new)=R2(old) - 0.6667R1(new) | 1.3 | 1 | 0.6 | 0 | -0.1 | 0.4 |
teration-3 | Cj | 36 | 28 | 32 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | S1 | S2 | MinRatio XBx2 |
x3 | 32 | 0.05 | 0 | (0.1) | 1 | 0.15 | -0.1 | 0.050.1=0.5→ |
x1 | 36 | 1.3 | 1 | 0.6 | 0 | -0.1 | 0.4 | 1.30.6=2.1667 |
Z=48.4 | Zj | 36 | 24.8 | 32 | 1.2 | 11.2 | ||
Zj-Cj | 0 | -3.2↑ | 0 | 1.2 | 11.2 |
Negative
minimum Zj-Cj
is
-3.2 and its column index
is 2. So,
the entering variable is
x2.
Minimum
ratio is 0.5
and its row
index is 1. So,
the leaving basis variable is
x3.
∴ The pivot element is 0.1.
Entering
=x2, Departing
=x3, Key Element
=0.1
R1(old) = | 0.05 | 0 | 0.1 | 1 | 0.15 | -0.1 |
R1(new)=R1(old)÷0.1 | 0.5 | 0 | 1 | 10 | 1.5 | -1 |
R2(old) = | 1.3 | 1 | 0.6 | 0 | -0.1 | 0.4 |
R1(new) = | 0.5 | 0 | 1 | 10 | 1.5 | -1 |
0.6×R1(new) = | 0.3 | 0 | 0.6 | 6 | 0.9 | -0.6 |
R2(new)=R2(old) - 0.6R1(new) | 1 | 1 | 0 | -6 | -1 | 1 |
Iteration-4 | Cj | 36 | 28 | 32 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | S1 | S2 | MinRatio |
x2 | 28 | 0.5 | 0 | 1 | 10 | 1.5 | -1 | |
x1 | 36 | 1 | 1 | 0 | -6 | -1 | 1 | |
Z=50 | Zj | 36 | 28 | 64 | 6 | 8 | ||
Zj-Cj | 0 | 0 | 32 | 6 | 8 |
Since all Zj-Cj≥0
Hence, optimal solution is arrived with value of variables as
:
x1=1,x2=0.5,x3=0
Max Z=50