Question

In: Advanced Math

MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...

MAXIMIZATION BY THE SIMPLEX METHOD

Maximize z = x1 + 2x2 + x3

subject to

x1 + x2 ≤ 3

x2 + x3 ≤ 4

x1 + x3 ≤ 5

x1, x2, x3 ≥0

Solutions

Expert Solution

Maximize Z = X1 + 2X2 + 3X3

subject to

X1 + X2   <= 3

X2 + X3 <= 4

X1 + X3 <= 5

X1 , X2 , X3 >= 0

So this is a standard linear programming and we can add slack variables S1 ,S2 and S3 to get equations from inequalities.

X1 + X2 + S1 = 3

X2 + X3 + S2 = 4

X1 + X3 + S3 = 5

And -X1 - 2X2 - 3X3­­ + Z = 0

So the initial tableau for above linear programming

X1 X2 X3     S1 S2     S3      Z            

1       1      0       1        0      0      0      3     

0      1       1       0        1       0      0      4     

1       0       1       0        0       1      0      5     

-1     -2     -3        0        0       0      1      0     

Here the most negative element in the bottom row will indicates the pivot element so here -3 ,so I am taking 3rd column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates

i.e. +min (3/0 , 4/1, 5/1) = 4/1 so 2nd row as a pivot row.

R3-> R3  - R2              R4-> R4 + 3 R2

X1     X2 X3    S1      S2     S3    Z            

1      1      0       1        0      0      0      3     

0        1       1      0        1      0      0      4     

1      -1       0       0      -1     1      0      1     

-1      1      0       0        3      0      1      12

Here the most negative element in the bottom row will indicates the pivot element so here -1 ,so I am taking 1st  column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates

i.e. +min (3/1 , 4/0, 1/1) = 1/1 so 3rd  row as a pivot row.

R1-> R1  - R3              R4-> R4 + R3

X1 X2 X3     S1    S2     S3 Z            

0      2      0      1      1      -1     0      2     

0      1       1       0      1       0      0      4     

1      -1     0      0    -1       1      0      1     

0      0       0      0      2       1      1      13

So now we did not have any negative elements in bottom row so we can stop the iterations. Now the optimum solution is Maximum Z = 13   At    X1 = 1 , X2= 0 ,X3 =4


Related Solutions

Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4            &
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4                             X1 + X2 ≤ 8                            X1, X2 ≥ 0
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 +...
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 + 8x3≤ 3 3x1 + 2x2 + 2x3≤ 4       x1, x2, x3≥ 0 25. Write down the economic interpretations of the dual of the problem (24).
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3 ? 430 (Operation 1) 3x1 + 2x3 ? 460 (Operation 2) x1 + 4x2 ? 420 (Opeartion 3 ) x1, x2, x3 ?0 Optimal tableau is given below: basic x1 x2 x3 x4 x5 x6 solution z 4 0 0 1 2 0 1350 x2 -1/4 1 0 1/2 -1/4 0 100 x3 3/2 0 1 0 1/2 0 230 x6 2 0 0...
Solve this problem with the revised simplex method: Maximize            Z = 5X1 + 3X2 + 2X3...
Solve this problem with the revised simplex method: Maximize            Z = 5X1 + 3X2 + 2X3 Subject to            4X1 + 5X2 + 2X3 + X4 ≤ 20                             3X1 + 4X2 - X3 + X4 ≤ 30                            X1, X2, X3, X4 ≥ 0
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50, c1 may vary;...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 =...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 = 2 2x1 − 5x2 + 5x3 = 3 (a) Write the system of linear equations as a matrix equation, AX = B. x1 x2 x3 = (b) Use Gauss-Jordan elimination on [A    B] to solve for the matrix X. X = x1 x2 x3 =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT