Question

In: Advanced Math

MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...

MAXIMIZATION BY THE SIMPLEX METHOD

Maximize z = x1 + 2x2 + x3

subject to

x1 + x2 ≤ 3

x2 + x3 ≤ 4

x1 + x3 ≤ 5

x1, x2, x3 ≥0

Solutions

Expert Solution

Maximize Z = X1 + 2X2 + 3X3

subject to

X1 + X2   <= 3

X2 + X3 <= 4

X1 + X3 <= 5

X1 , X2 , X3 >= 0

So this is a standard linear programming and we can add slack variables S1 ,S2 and S3 to get equations from inequalities.

X1 + X2 + S1 = 3

X2 + X3 + S2 = 4

X1 + X3 + S3 = 5

And -X1 - 2X2 - 3X3­­ + Z = 0

So the initial tableau for above linear programming

X1 X2 X3     S1 S2     S3      Z            

1       1      0       1        0      0      0      3     

0      1       1       0        1       0      0      4     

1       0       1       0        0       1      0      5     

-1     -2     -3        0        0       0      1      0     

Here the most negative element in the bottom row will indicates the pivot element so here -3 ,so I am taking 3rd column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates

i.e. +min (3/0 , 4/1, 5/1) = 4/1 so 2nd row as a pivot row.

R3-> R3  - R2              R4-> R4 + 3 R2

X1     X2 X3    S1      S2     S3    Z            

1      1      0       1        0      0      0      3     

0        1       1      0        1      0      0      4     

1      -1       0       0      -1     1      0      1     

-1      1      0       0        3      0      1      12

Here the most negative element in the bottom row will indicates the pivot element so here -1 ,so I am taking 1st  column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates

i.e. +min (3/1 , 4/0, 1/1) = 1/1 so 3rd  row as a pivot row.

R1-> R1  - R3              R4-> R4 + R3

X1 X2 X3     S1    S2     S3 Z            

0      2      0      1      1      -1     0      2     

0      1       1       0      1       0      0      4     

1      -1     0      0    -1       1      0      1     

0      0       0      0      2       1      1      13

So now we did not have any negative elements in bottom row so we can stop the iterations. Now the optimum solution is Maximum Z = 13   At    X1 = 1 , X2= 0 ,X3 =4


Related Solutions

Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ³ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find the...
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4            &
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4                             X1 + X2 ≤ 8                            X1, X2 ≥ 0
Use the Simplex method to solve the following problem:   Max  Z = x1 + 2x2 + 3x3...
Use the Simplex method to solve the following problem:   Max  Z = x1 + 2x2 + 3x3   s. to2x1 + x2 + x3 <= 20 x1 + 2x2 - x3 <= 20         3x2 + x3 <= 10        x1, x2, x3 >= 0 Clearly specify the optimal values of all variables ya used in your procedure as well as the optimal value of the objective function. In part a), say what corner point was analyzed in each iteration and give the...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6               &nb
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6                  x1,x2 This can be simply done by drawing all the lines in the x-y plane and looking at the corner points. Our points of interest are the corner points and we will check where we get the maximum value for our objective function by putting all the four corner points. (2,0), (0,2), (0,0), (6/7, 12/7) We get maximum at = (6/7, 12/7) and the maximum value is =...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 +...
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 + 8x3≤ 3 3x1 + 2x2 + 2x3≤ 4       x1, x2, x3≥ 0 25. Write down the economic interpretations of the dual of the problem (24).
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+...
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ≥ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT