Question

In: Advanced Math

Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...

Exercise

Solve the following linear programs graphically.

Maximize            Z = X1 + 2X2

Subject to            2X1 + X2 ≥ 12

                            X1 + X2 ≥ 5

                           -X1 + 3X2 ≤ 3

                           6X1 – X2 ≥ 12

                           X1, X2 ≥ 0

Solutions

Expert Solution


Related Solutions

Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 +...
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 + X2 ≤ 6                             X1 - X2 ≥ 3                            -X1 + 2X2 ≥ 2                            X1, X2 ≥ 0
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6               &nb
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6                  x1,x2 This can be simply done by drawing all the lines in the x-y plane and looking at the corner points. Our points of interest are the corner points and we will check where we get the maximum value for our objective function by putting all the four corner points. (2,0), (0,2), (0,0), (6/7, 12/7) We get maximum at = (6/7, 12/7) and the maximum value is =...
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4            &
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4                             X1 + X2 ≤ 8                            X1, X2 ≥ 0
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2 <= 22 -x1 + 4x2 <= 10 4x1 – 2x2 <= 14 x1 – 3x2 <= 1 x1, x2, >=0 Clearly identify the feasible region, YOUR iso-profit line and the optimal solution (that is, d.v. values and O.F. Value.
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ³ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find the...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6                 x1 + x2 ≥ 2                 xi ≥0 for i=1,2 Inserting slack, excess, or artificial variables, construct the initial simplex tableau. Identify the corresponding initial (artificial) basic feasible solution including the objective function value. Identify the entering basic variable and the leaving basic variable for the next iteration.
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1...
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1 + 3x2 + 2x3 ≥ 20 x1 + 5x2 ≥ 10 x1 + 2x2 + x3 ≤ 18 x1 , x2 , x3 ≥ 0 1. Write this LP in standart form of LP. 2.Find the optimal solution to this problem by applying the Dual Simplex method for finding the initial basic feasible solution to the primal of this LP. Then, find the optimal...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Indicate clearly the optimal basic and nonbasic variables and their values and write the reduced cost of each optimal nonbasic variable.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT