Question

In: Operations Management

Consider the following linear programming problem Maximize 6x1 + 4x2 + 5x3 Subject to: 2x1 +...

Consider the following linear programming problem

Maximize 6x1 + 4x2 + 5x3

Subject to:

2x1 + 3x2 + x3 ≥ 30

2x1 + x2 + x3 ≤ 50

4x1 + 2x2 + 3x3 ≤ 120

x1, x2, x3 ≥ 0

a) Find the optimal solution by using simplex method

b) Find the dual price for the first constraint.

c) Find the dual price for the second constraint.

d) Find the dual price for the third constraint.

e) Suppose the right-hand side of the third constraint is increased from 120 to 125. Find the new optimal

solution and its value.

f) Suppose the right-hand side of the third constraint is decreased from 120 to 110. Find the new optimal

solution and its value.

Solutions

Expert Solution

a)

Optimal solution is determined using Simplex method as follows:

---------------------------------------------------------------------

b)

Refer the optimal tableau (iteration 4)

Value in the last (Cj-Zj) are the negatives of dual prices.

Value in last row and S1 column is 0

So, dual price for the first constraint is 0

---------------------------------------------------------------------

c)

Dual price for the second constraint is 2

---------------------------------------------------------------------

d)

Dual price for the third constraint is 1

---------------------------------------------------------------------


Related Solutions

Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   Answer ≤ C1/C2  ≤  Answer b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   .......... ≤ C1/C2  ≤  ............ b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2 <= 22 -x1 + 4x2 <= 10 4x1 – 2x2 <= 14 x1 – 3x2 <= 1 x1, x2, >=0 Clearly identify the feasible region, YOUR iso-profit line and the optimal solution (that is, d.v. values and O.F. Value.
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to...
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to X1 + X2 < 7 // Resource 1 –X1 + 3X2 < 3 // Resource 2 X1, X2 > 0 X1, X2 are integer i. Consider using the Branch and Bound (B & B) technique to solve the ILP model. With the help of Tora software, draw the B & B tree. Always give priority for X1 in branching over X2. Clearly label the...
For the following linear programming problem:    Maximize z = 2x1+ x2    Such that     ...
For the following linear programming problem:    Maximize z = 2x1+ x2    Such that      x1+ 2x2 ≤ 12          x2 ≥ 3       x1,x2 ≥ 0 (a) Write the first two constraints in equation form by adding slack or subtracting excess (surplus) variables. (b)Find all basic solutions for this LP (c) Which of these solutions are feasible? (d)Which of these feasible solutions is optimal? Find the optimal value of z
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1...
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1 + 3x2 + 2x3 ≥ 20 x1 + 5x2 ≥ 10 x1 + 2x2 + x3 ≤ 18 x1 , x2 , x3 ≥ 0 1. Write this LP in standart form of LP. 2.Find the optimal solution to this problem by applying the Dual Simplex method for finding the initial basic feasible solution to the primal of this LP. Then, find the optimal...
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2...
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2 ≥ 1 • 3x1 + x2 ≤ .5 • x1, x2 ≥ 0 Formulate the dual of this problem.
Consider the following linear programming problem: Maximize 16X + 14Y Subject to: 3X + 4Y ≤...
Consider the following linear programming problem: Maximize 16X + 14Y Subject to: 3X + 4Y ≤ 520 3X + 2Y ≤ 320 all variable ≥ 0 The maximum possible value for the objective function is
Consider the following linear programming problem: Maximize 10X + 8Y Subject to: 40X + 24Y <=...
Consider the following linear programming problem: Maximize 10X + 8Y Subject to: 40X + 24Y <= 600 20X + 30Y <= 480 all variables >= 0
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT