In: Operations Management
MAX Z = 2x1 + 8x2 + 4x3
subject to
2x1 + 3x2 <= 8
2x2 + 5x3 <= 12
3x1 + x2 + 4x3 <= 15
x1 + x3 = 11
and x1,x2,x3 >= 0
apply the Dual Simplex Method to recover feasibility.
Solution by DUAL SIMPLEX METHOD:
Problem is
|
||||||||||||||||||||||||||||||||||||||||||||
| subject to | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
| and x1,x2,x3≥0; |
The problem is converted to canonical form by adding slack, surplus
and artificial variables as appropriate -
1. As the constraint-1 is of type '≤' we should add slack variable
S1
2. As the constraint-2 is of type '≤' we should add slack variable
S2
3. As the constraint-3 is of type '≤' we should add slack variable
S3
4. As the constraint-4 is of type '=' we should add artificial
variable A1
After introducing slack,artificial variables
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| subject to | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| and x1,x2,x3,S1,S2,S3,A1≥0 |
| Iteration-1 | Cj | 2 | 8 | 4 | 0 | 0 | 0 | -M | |
| B | CB | XB | x1 | x2 | x3 | S1 | S2 | S3 | A1 |
| S1 | 0 | 8 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| S2 | 0 | 12 | 0 | 2 | 5 | 0 | 1 | 0 | 0 |
| S3 | 0 | 15 | 3 | 1 | 4 | 0 | 0 | 1 | 0 |
| A1 | -M | 11 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| Z = -11M | Zj | -M | 0 | -M | 0 | 0 | 0 | -M | |
| Zj-Cj | -M-2 | -8 | -M-4 | 0 | 0 | 0 | 0 | ||
| Ratio | --- | --- | --- | --- | --- | --- | --- |
Here not all Zj-Cj≥0. (Because Z1-C1=-M-2)
Hence, the method fails to
get an optimal basic feasible solution.
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Then, I have solved it using SIMPLEX METHOD
Problem is
|
|||||||||||||||||||||||||||||||||
| subject to | |||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
| and x1,x2,x3≥0; |
The problem is converted to canonical form by adding slack, surplus
and artificial variables as appropiate
1. As the constraint-1 is of type '≤' we should add slack variable
S1
2. As the constraint-2 is of type '≤' we should add slack variable
S2
3. As the constraint-3 is of type '≤' we should add slack variable
S3
After introducing slack variables
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| subject to | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| and x1,x2,x3,S1,S2,S3≥0 |
| Iteration-1 | Cj | 5 | 10 | 8 | 0 | 0 | 0 | ||
| B | CB | XB | x1 | x2 | x3 | S1 | S2 | S3 | MinRatio XBx2 |
| S1 | 0 | 60 | 3 | (5) | 2 | 1 | 0 | 0 | 605=12→ |
| S2 | 0 | 72 | 4 | 4 | 4 | 0 | 1 | 0 | 724=18 |
| S3 | 0 | 100 | 2 | 4 | 5 | 0 | 0 | 1 | 1004=25 |
| Z=0 | Zj | 0 | 0 | 0 | 0 | 0 | 0 | ||
| Zj-Cj | -5 | -10↑ | -8 | 0 | 0 | 0 |
Negative minimum Zj-Cj is -10 and its column index is 2. So,
the entering variable is
x2.
Minimum ratio is 12 and its row index is 1. So, the leaving basis variable is S1.
∴ The pivot element is 5.
Entering =x2, Departing =S1, Key Element =5

| R1(old) = | 60 | 3 | 5 | 2 | 1 | 0 | 0 |
| R1(new)=R1(old)÷5 | 12 | 0.6 | 1 | 0.4 | 0.2 | 0 | 0 |

| R2(old) = | 72 | 4 | 4 | 4 | 0 | 1 | 0 |
| R1(new) = | 12 | 0.6 | 1 | 0.4 | 0.2 | 0 | 0 |
| 4×R1(new) = | 48 | 2.4 | 4 | 1.6 | 0.8 | 0 | 0 |
| R2(new)=R2(old) - 4R1(new) | 24 | 1.6 | 0 | 2.4 | -0.8 | 1 | 0 |

| R3(old) = | 100 | 2 | 4 | 5 | 0 | 0 | 1 |
| R1(new) = | 12 | 0.6 | 1 | 0.4 | 0.2 | 0 | 0 |
| 4×R1(new) = | 48 | 2.4 | 4 | 1.6 | 0.8 | 0 | 0 |
| R3(new)=R3(old) - 4R1(new) | 52 | -0.4 | 0 | 3.4 | -0.8 | 0 | 1 |
| Iteration-2 | Cj | 5 | 10 | 8 | 0 | 0 | 0 | ||
| B | CB | XB | x1 | x2 | x3 | S1 | S2 | S3 | MinRatio XBx3 |
| x2 | 10 | 12 | 0.6 | 1 | 0.4 | 0.2 | 0 | 0 | 120.4=30 |
| S2 | 0 | 24 | 1.6 | 0 | (2.4) | -0.8 | 1 | 0 | 242.4=10→ |
| S3 | 0 | 52 | -0.4 | 0 | 3.4 | -0.8 | 0 | 1 | 523.4=15.2941 |
| Z=120 | Zj | 6 | 10 | 4 | 2 | 0 | 0 | ||
| Zj-Cj | 1 | 0 | -4↑ | 2 | 0 | 0 |
Negative minimum Zj-Cj is -4 and its column index is 3. So,
the entering variable is
x3.
Minimum ratio is 10 and its row index is 2. So, the leaving basis variable is S2.
∴ The pivot element is
2.4.
Entering =x3, Departing =S2, Key Element =2.4

| R2(old) = | 24 | 1.6 | 0 | 2.4 | -0.8 | 1 | 0 |
| R2(new)=R2(old)÷2.4 | 10 | 0.6667 | 0 | 1 | -0.3333 | 0.4167 | 0 |

| R1(old) = | 12 | 0.6 | 1 | 0.4 | 0.2 | 0 | 0 |
| R2(new) = | 10 | 0.6667 | 0 | 1 | -0.3333 | 0.4167 | 0 |
| 0.4×R2(new) = | 4 | 0.2667 | 0 | 0.4 | -0.1333 | 0.1667 | 0 |
| R1(new)=R1(old) - 0.4R2(new) | 8 | 0.3333 | 1 | 0 | 0.3333 | -0.1667 | 0 |

| R3(old) = | 52 | -0.4 | 0 | 3.4 | -0.8 | 0 | 1 |
| R2(new) = | 10 | 0.6667 | 0 | 1 | -0.3333 | 0.4167 | 0 |
| 3.4×R2(new) = | 34 | 2.2667 | 0 | 3.4 | -1.1333 | 1.4167 | 0 |
| R3(new)=R3(old) - 3.4R2(new) | 18 | -2.6667 | 0 | 0 | 0.3333 | -1.4167 | 1 |
| Iteration-3 | Cj | 5 | 10 | 8 | 0 | 0 | 0 | ||
| B | CB | XB | x1 | x2 | x3 | S1 | S2 | S3 | MinRatio |
| x2 | 10 | 8 | 0.3333 | 1 | 0 | 0.3333 | -0.1667 | 0 | |
| x3 | 8 | 10 | 0.6667 | 0 | 1 | -0.3333 | 0.4167 | 0 | |
| S3 | 0 | 18 | -2.6667 | 0 | 0 | 0.3333 | -1.4167 | 1 | |
| Z=160 | Zj | 8.6667 | 10 | 8 | 0.6667 | 1.6667 | 0 | ||
| Zj-Cj | 3.6667 | 0 | 0 | 0.6667 | 1.6667 | 0 |
Since all Zj-Cj≥0
Hence, the optimal solution has arrived with the value of variables
as :
x1=0,x2=8,x3=10
Max Z=160