In: Advanced Math
4-Consider the following problem:
max − 3x1 + 2x2 − x3 + x4
s.t.
2x1 − 3x2 − x3 + x4 ≤ 0
− x1 + 2x2 + 2x3 − 3x4 ≤ 1
− x1 + x2 − 4x3 + x4 ≤ 8
x1, x2, x3, x4 ≥ 0
Use the Simplex method to verify that the optimal objective value is unbounded. Make use of the final tableau to construct an unbounded direction..
Solution:
Problem
is
|
||||||||||||||||||||||||||||||||||||||||||
subject to | ||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
and x1,x2,x3,x4≥0; |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
subject to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
and x1,x2,x3,x4,S1,S2,S3≥0 |
Iteration-1 | Cj | -3 | 2 | -1 | 1 | 0 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | x4 | S1 | S2 | S3 | MinRatio XB/x2 |
S1 | 0 | 0 | 2 | -3 | -1 | 1 | 1 | 0 | 0 | --- |
S2 | 0 | 1 | -1 | (2) | 2 | -3 | 0 | 1 | 0 | 1/2=0.5→ |
S3 | 0 | 8 | -1 | 1 | -4 | 1 | 0 | 0 | 1 | 8/1=8 |
Z=0 | Zj | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Zj-Cj | 3 | -2↑ | 1 | -1 | 0 | 0 | 0 |
R2(new)=R2(old)÷2
R1(new)=R1(old) + 3R2(new)
R3(new)=R3(old) - R2(new)
Iteration-2 | Cj | -3 | 2 | -1 | 1 | 0 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | x4 | S1 | S2 | S3 | MinRatio XB/x4 |
S1 | 0 | 1.5 | 0.5 | 0 | 2 | -3.5 | 1 | 1.5 | 0 | --- |
x2 | 2 | 0.5 | -0.5 | 1 | 1 | -1.5 | 0 | 0.5 | 0 | --- |
S3 | 0 | 7.5 | -0.5 | 0 | -5 | (2.5) | 0 | -0.5 | 1 | 7.5/2.5=3→ |
Z=1 | Zj | -1 | 2 | 2 | -3 | 0 | 1 | 0 | ||
Zj-Cj | 2 | 0 | 3 | -4↑ | 0 | 1 | 0 |
R3(new)=R3(old)÷2.5
R1(new)=R1(old) + 3.5R3(new)
R2(new)=R2(old) + 1.5R3(new)
Iteration-3 | Cj | -3 | 2 | -1 | 1 | 0 | 0 | 0 | ||
B | CB | XB | x1 | x2 | x3 | x4 | S1 | S2 | S3 | MinRatio XB/x3 |
S1 | 0 | 12 | -0.2 | 0 | -5 | 0 | 1 | 0.8 | 1.4 | --- |
x2 | 2 | 5 | -0.8 | 1 | -2 | 0 | 0 | 0.2 | 0.6 | --- |
x4 | 1 | 3 | -0.2 | 0 | -2 | 1 | 0 | -0.2 | 0.4 | --- |
Z=13 | Zj | -1.8 | 2 | -6 | 1 | 0 | 0.2 | 1.6 | ||
Zj-Cj | 1.2 | 0 | -5↑ | 0 | 0 | 0.2 | 1.6 |