Question

In: Operations Management

     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+...

     Consider the following problem

    Maximize Z=2x1 + 5x2 + x3

subject to

               4x1+ 2x2 + x3 ≤ 6

                x1 + x2 ≤ 2

                xi ≥ 0 for i=1,2,3

a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution?

b. What is the next non-basic variable to enter the basis

c. Using the minimum ratio rule, identify the basic variable to leave the basis.

d. Using elementary row operations, find the next basic feasible solution.

    Note: You do not need to find the optimal solution to this problem. Just go through one iteration of the simplex method.

Solutions

Expert Solution

If you liked the answer please give an Up-vote, this will be quite encouraging for me, thank you!


Related Solutions

Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   Answer ≤ C1/C2  ≤  Answer b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   .......... ≤ C1/C2  ≤  ............ b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48 X1, X2 ≥ 0 what the optimal ??
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1...
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1 + 3x2 + 2x3 ≥ 20 x1 + 5x2 ≥ 10 x1 + 2x2 + x3 ≤ 18 x1 , x2 , x3 ≥ 0 1. Write this LP in standart form of LP. 2.Find the optimal solution to this problem by applying the Dual Simplex method for finding the initial basic feasible solution to the primal of this LP. Then, find the optimal...
Consider the following linear programming problem Maximize 6x1 + 4x2 + 5x3 Subject to: 2x1 +...
Consider the following linear programming problem Maximize 6x1 + 4x2 + 5x3 Subject to: 2x1 + 3x2 + x3 ≥ 30 2x1 + x2 + x3 ≤ 50 4x1 + 2x2 + 3x3 ≤ 120 x1, x2, x3 ≥ 0 a) Find the optimal solution by using simplex method b) Find the dual price for the first constraint. c) Find the dual price for the second constraint. d) Find the dual price for the third constraint. e) Suppose the right-hand...
For the following linear programming problem:    Maximize z = 2x1+ x2    Such that     ...
For the following linear programming problem:    Maximize z = 2x1+ x2    Such that      x1+ 2x2 ≤ 12          x2 ≥ 3       x1,x2 ≥ 0 (a) Write the first two constraints in equation form by adding slack or subtracting excess (surplus) variables. (b)Find all basic solutions for this LP (c) Which of these solutions are feasible? (d)Which of these feasible solutions is optimal? Find the optimal value of z
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 +...
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 + 8x3≤ 3 3x1 + 2x2 + 2x3≤ 4       x1, x2, x3≥ 0 25. Write down the economic interpretations of the dual of the problem (24).
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT