Question

In: Statistics and Probability

Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48...

Maximize $4X1 + $8X2
Subject To 2X1 + 5X2 ≤ 50
3X1 + 3X2 ≤ 48
X1, X2 ≥ 0
what the optimal ??

Solutions

Expert Solution



Related Solutions

Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   Answer ≤ C1/C2  ≤  Answer b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   .......... ≤ C1/C2  ≤  ............ b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50, c1 may vary;...
"Primal" MAXIMIZE Z = 12X1 + 18X2 +10X3 S.T. 2X1 + 3X2 + 4X3 <= 50...
"Primal" MAXIMIZE Z = 12X1 + 18X2 +10X3 S.T. 2X1 + 3X2 + 4X3 <= 50 -X1 + X2 + X3 <= 0 0X1 - X2 + 1.5X3 <= 0 X1, X2, X3 >=0 1. Write the "Dual" of this problem. 2. Write the "Dual of the Dual" of this problem. For steps 3 & 4, use the Generic Linear Programming spreadsheet or the software of your choice. (Submit a file pdf, text, xls file, etc., indicating the solution values...
[6.4] Solve the following linear program by a graphical method: Maximize 3x1 + 3x2 + 21x3...
[6.4] Solve the following linear program by a graphical method: Maximize 3x1 + 3x2 + 21x3 subject to 6x1 + 9x2 + 25x3 <= 15 3x1 + 2x2 + 25x3 <= 20 x1 , x2 , x3 >= 0 (Hint: utilize the dual problem.)    
Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:      ...
Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:       10x1 + 4x2 ≤ 60                   25x1 + 50x2 ≤ 200                   x1, x2 ≥ 0 Find the optimal profit and the values of x1 and x2 at the optimal solution.
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
A primal maximization problem is given. Maximize f = 60x1 + 30x2 subject to 3x1 +...
A primal maximization problem is given. Maximize f = 60x1 + 30x2 subject to 3x1 + 2x2 ≤ 150 x1 + x2 ≤ 70 . (a) Form the dual minimization problem. (Use y1 and y2 as the variables and g as the function.) Minimize g =     subject to    ≥ 60    ≥ 30 y1, y2 ≥ 0 . (b) Solve both the primal and dual problems with the simplex method. primal     x1 = primal     x2 = primal     f =...
A primal maximization problem is given. Maximize f = 20x1 + 10x2 subject to 3x1 +...
A primal maximization problem is given. Maximize f = 20x1 + 10x2 subject to 3x1 + 2x2 ≤ 90 x1 + x2 ≤ 40 . (a) Form the dual minimization problem. (Use y1 and y2 as the variables and g as the function.) Minimize g = subject to = (b) Solve both the primal and dual problems with the simplex method. primal     x1 = primal     x2 = primal     f = dual     y1 = dual     y2 = dual     g =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT