Question

In: Math

For the system 2x1 − 4x2 + x3 + x4 = 0, x1 − 2x2 +...

For the system

2x1 − 4x2 + x3 + x4 = 0,

x1 − 2x2 + 5x4 = 0,

find some vectors v1, . . . , vk such that the solution set to this system equals span(v1, . . . , vk).

Solutions

Expert Solution

The given homogeneos linear system of equations is

2x1 − 4x2 + x3+ x4 = 0,

x1 − 2x2 + 5x4 = 0,

The coefficient matrix of this system is A(say) =

2

-4

1

1

1

-2

0

5

To solve the above system, we will reduce A to its RREF as under:

Multiply the 1st row by ½

Add -1 times the 1st row to the 2nd row

Multiply the 2nd row by -2

Add -1/2 times the 2nd row to the 1st row

Then the RREF of A is

1

-2

0

5

0

0

1

-9

This implies that the given linear system is equivalent to x1 − 2x2 + 5x4 = 0 or, x1 = 2x2 - 5x4 and x3 -9x4 = 0 or, x3 =9x4.

Then, (x1,x2,x3,x4)T = (2x2-5x4 , x2, 9x4 , x4)T = x2(2,1,0,0)T+ x4(-5, 0,9,1)T = s(2,1,0,0)T+ t(-5, 0,9,1)T where s = x2 and t = x4 are arbitrary real numbers. This means that every solution to the given homogeneos linear system of equations is a linear combination of the vectors v1 =(2,1,0,0)T and v2 = (-5, 0,9,1) .

Thus the solution set of the given homogeneos linear system of equations = span{v1,v2} = span{(2,1,0,0)T , (-5, 0,9,1)T }


Related Solutions

Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 −...
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 − 3x2 − x3 + x4 ≤ 0 − x1 + 2x2 + 2x3 − 3x4 ≤ 1 − x1 + x2 − 4x3 + x4 ≤ 8 x1, x2, x3, x4 ≥ 0 Use the Simplex method to verify that the optimal objective value is unbounded. Make use of the final tableau to construct an unbounded direction..
Find a basis and the dimension of the subspace: V = {(x1, x2, x3, x4)| 2x1...
Find a basis and the dimension of the subspace: V = {(x1, x2, x3, x4)| 2x1 = x2 + x3, x2 − 2x4 = 0}
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
1. Solve linear system using Gaussian elimination a) x1 + 2x2 + x3 = 2 -x1...
1. Solve linear system using Gaussian elimination a) x1 + 2x2 + x3 = 2 -x1 − 3x2 + 2x3 = -3   x1 − 6x2 + 3x3 = -6 b) -2b + 2c = 10 3a + 12b -3c = -6 6a + 18b + 0c = 19 c) 4x - 1y + 4z + 3t = 5 1x - 4z + 6t = 7 5x - 5y + 1z + 2t = -5 4x + 1y + 3z +...
The prices of inputs (x1,x2,x3,x4) are (4,1,3,2): (a) If the production function is given by f(x3,x4)...
The prices of inputs (x1,x2,x3,x4) are (4,1,3,2): (a) If the production function is given by f(x3,x4) =min⁡{x1+x2,x3+x4} what is the minimum cost of producing one unit of output? (b) If the production function is given by f(x3,x4)=x1+x2 +min⁡{x3+x4} what is the minimum cost of producing one unit of output?
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
By using Big-m method Minimize z=4x1+8x2+3X3subject to x1+x2>=2, 2x1+x3>=5 and x1,x2,x3>=0
By using Big-m method Minimize z=4x1+8x2+3X3subject to x1+x2>=2, 2x1+x3>=5 and x1,x2,x3>=0
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 =...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 = 2 2x1 − 5x2 + 5x3 = 3 (a) Write the system of linear equations as a matrix equation, AX = B. x1 x2 x3 = (b) Use Gauss-Jordan elimination on [A    B] to solve for the matrix X. X = x1 x2 x3 =
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT