Question

In: Advanced Math

Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤...

Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50, c1 may vary; (iii) c1 = 40, c2 may vary. Suppose the RHS of the second constraint increases by an amount ∆b. (It is now 120 + ∆b.) Solve the two equations for x1 and x2 in terms of ∆b, and hence determine its shadow price.

Solutions

Expert Solution

I HOPE THIS HOPE THIS ANSWER WILL BE HELPFUL TO YOU

PLEASE LIKE THIS ANSWER

THANK YOU.


Related Solutions

1. [25 marks] Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40...
1. [25 marks] Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50,...
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6               &nb
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6                  x1,x2 This can be simply done by drawing all the lines in the x-y plane and looking at the corner points. Our points of interest are the corner points and we will check where we get the maximum value for our objective function by putting all the four corner points. (2,0), (0,2), (0,0), (6/7, 12/7) We get maximum at = (6/7, 12/7) and the maximum value is =...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ³ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find the...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6                 x1 + x2 ≥ 2                 xi ≥0 for i=1,2 Inserting slack, excess, or artificial variables, construct the initial simplex tableau. Identify the corresponding initial (artificial) basic feasible solution including the objective function value. Identify the entering basic variable and the leaving basic variable for the next iteration.
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 =...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 = 2 2x1 − 5x2 + 5x3 = 3 (a) Write the system of linear equations as a matrix equation, AX = B. x1 x2 x3 = (b) Use Gauss-Jordan elimination on [A    B] to solve for the matrix X. X = x1 x2 x3 =
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48 X1, X2 ≥ 0 what the optimal ??
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT