Question

In: Operations Management

Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2...

Consider the following problem

    Maximize Z=2x1 + 5x2 + x3

subject to

               4x1+ 2x2 + x3 ≤ 6

                x1 + x2 ≤ 2

                xi ³ 0 for i=1,2,3

a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution?

b. What is the next non-basic variable to enter the basis

c. Using the minimum ratio rule, identify the basic variable to leave the basis.

d. Using elementary row operations, find the next basic feasible solution.

Solutions

Expert Solution

If you liked the answer please give an Up-vote, this will be quite encouraging for me, thank you!


Related Solutions

     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+...
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ≥ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6                 x1 + x2 ≥ 2                 xi ≥0 for i=1,2 Inserting slack, excess, or artificial variables, construct the initial simplex tableau. Identify the corresponding initial (artificial) basic feasible solution including the objective function value. Identify the entering basic variable and the leaving basic variable for the next iteration.
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   Answer ≤ C1/C2  ≤  Answer b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   .......... ≤ C1/C2  ≤  ............ b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48 X1, X2 ≥ 0 what the optimal ??
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 +...
24. Maximize    π = 36x1 + 28x2 + 32 x3 Subject to 2x1 + 2x2 + 8x3≤ 3 3x1 + 2x2 + 2x3≤ 4       x1, x2, x3≥ 0 25. Write down the economic interpretations of the dual of the problem (24).
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50, c1 may vary;...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT