Question

In: Advanced Math

Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...

Consider the following linear program. Maximize z= 5x1+ 3x2

subject to 3x1+ 5x2≤15

5x1+ 2x2≤10

– x1+ x2≤2

x2≤2.5

x1≥0, x2≥0

a. Show the equality form of the model.

b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution.

c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function values. Which one is optimal?

d.Let the slack variables for the first two constraints, x3and x4, be the axes of the graph, and sketch the geometric representation of the model. Show an iso-objective line in these variables, and from it determine the optimal solution.

Solutions

Expert Solution


Related Solutions

Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:      ...
Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:       10x1 + 4x2 ≤ 60                   25x1 + 50x2 ≤ 200                   x1, x2 ≥ 0 Find the optimal profit and the values of x1 and x2 at the optimal solution.
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48 X1, X2 ≥ 0 what the optimal ??
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   Answer ≤ C1/C2  ≤  Answer b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤...
Consider the following linear programming problem Maximize $4X1 + $5X2 Subject To 2X1 + 5X2 ≤ 40 hr Constraint A 3X1 + 3X2 ≤ 30 hr Constraint B X1, X2 ≥ 0 Constraint C if A and B are the two binding constraints. (Round to ONLY two digits after decimal points) a) What is the range of optimality of the objective function?   .......... ≤ C1/C2  ≤  ............ b) Suppose that the unit revenues for X1 and X2 are changed to $100 and...
[6.4] Solve the following linear program by a graphical method: Maximize 3x1 + 3x2 + 21x3...
[6.4] Solve the following linear program by a graphical method: Maximize 3x1 + 3x2 + 21x3 subject to 6x1 + 9x2 + 25x3 <= 15 3x1 + 2x2 + 25x3 <= 20 x1 , x2 , x3 >= 0 (Hint: utilize the dual problem.)    
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+...
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ≥ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50, c1 may vary;...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
Solve this problem with the revised simplex method: Maximize            Z = 5X1 + 3X2 + 2X3...
Solve this problem with the revised simplex method: Maximize            Z = 5X1 + 3X2 + 2X3 Subject to            4X1 + 5X2 + 2X3 + X4 ≤ 20                             3X1 + 4X2 - X3 + X4 ≤ 30                            X1, X2, X3, X4 ≥ 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT