Question

In: Advanced Math

maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6               &nb

maximize z = 2x1+3x2

subject to   x1+3X2 6

                  3x1+2x2 6

                 x1,x2

This can be simply done by drawing all the lines in the x-y plane and looking at the corner points.

Our points of interest are the corner points and we will check where we get the maximum value for our objective function by putting all the four corner points. (2,0), (0,2), (0,0), (6/7, 12/7)

We get maximum at = (6/7, 12/7) and the maximum value is = 6.8571

1.Implement simplex algorithm.

2.What is the sequence of extreme points in the simplex algorithm?

Solutions

Expert Solution


Related Solutions

Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Indicate clearly the optimal basic and nonbasic variables and their values and write the reduced cost of each optimal nonbasic variable.
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2...
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2 + 5x3 <= 12 3x1 + x2 + 4x3 <= 15 x1 + x3 = 11 and x1,x2,x3 >= 0 apply the Dual Simplex Method to recover feasibility.
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Solve the LP you create by using the Simplex Method. You can use Big-M or Two-Phase Method if needed
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48...
Maximize $4X1 + $8X2 Subject To 2X1 + 5X2 ≤ 50 3X1 + 3X2 ≤ 48 X1, X2 ≥ 0 what the optimal ??
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6                 x1 + x2 ≥ 2                 xi ≥0 for i=1,2 Inserting slack, excess, or artificial variables, construct the initial simplex tableau. Identify the corresponding initial (artificial) basic feasible solution including the objective function value. Identify the entering basic variable and the leaving basic variable for the next iteration.
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ³ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT