Question

In: Advanced Math

1. [25 marks] Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40...

1. [25 marks] Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360.

Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases:

(i) both c1 and c2 may vary;

(ii) c2 = 50, c1 may vary;

(iii) c1 = 40, c2 may vary

Suppose the RHS of the second constraint increases by an amount ∆b. (It is now 120 + ∆b.) Solve the two equations for x1 and x2 in terms of ∆b, and hence determine its shadow price.

Solutions

Expert Solution

ANSWER:-


Related Solutions

Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤...
Consider the following model: maximize 40x1 +50x2 subject to: x1 +2x2 ≤ 40 4x1 +3x2 ≤ 120 x1, x2 ≥ 0 The optimal solution, determined by the two binding constraints, is x1 = 24, x2 = 8, OFV∗ = 1,360. Now consider a more general objective function, c1x1 + c2x2. Perform a sensitivity analysis to determine when the current solution remains optimal in the following cases: (i) both c1 and c2 may vary; (ii) c2 = 50, c1 may vary;...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to...
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to X1 + X2 < 7 // Resource 1 –X1 + 3X2 < 3 // Resource 2 X1, X2 > 0 X1, X2 are integer i. Consider using the Branch and Bound (B & B) technique to solve the ILP model. With the help of Tora software, draw the B & B tree. Always give priority for X1 in branching over X2. Clearly label the...
Consider the following linear programming problem Maximize $1 X1 + $2 X2 Subject To 2 X1...
Consider the following linear programming problem Maximize $1 X1 + $2 X2 Subject To 2 X1 + X2 ≤ 8 Constraint A X1 + X2 ≤ 5 Constraint B X1, X2 ≥ 0 Constraint C Note: Report two digits after the decimal point. Do NOT use thousands-separators (,) 1 - Which of the following is the correct standard maximization form for the above linear programming problem AnswerCorrectNot Correct AnswerCorrectNot Correct AnswerCorrectNot Correct AnswerCorrectNot Correct Z -X1 - 2 X2 =...
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4            &
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4                             X1 + X2 ≤ 8                            X1, X2 ≥ 0
(Operation Research II Industrial Engineering) Consider the following LP: Minimize z = x1 + 2x2 Subject...
(Operation Research II Industrial Engineering) Consider the following LP: Minimize z = x1 + 2x2 Subject to x1 + x2 >= 1 -x1 + 2x2 <= 3 x2 <= 5 x1,x2 >= 0 (a) Convert the LP given above to the standard form. Determine all the basic feasible solutions (bfs) of the problem. Give the values of both basic and nonbasic variables in each bfs. (b) Identify the adjacent basic feasible solutions of each extreme point of the feasible region....
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 =...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 = 2 2x1 − 5x2 + 5x3 = 3 (a) Write the system of linear equations as a matrix equation, AX = B. x1 x2 x3 = (b) Use Gauss-Jordan elimination on [A    B] to solve for the matrix X. X = x1 x2 x3 =
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT