In: Advanced Math
Let A = Z and let a, b ∈ A. Prove if the following binary operations are (i) commutative, (2) if they are associative and (3) if they have an identity (if the operations has an identity, give the identity or show that the operation has no identity).
(a) (3 points) f(a, b) = a + b + 1
(b) (3 points) f(a, b) = a(b + 1)
(c) (3 points) f(a, b) = x2 + xy + y2