Question

In: Advanced Math

a.) Prove the following: Lemma. Let a and b be integers. If both a and b...

a.) Prove the following: Lemma. Let a and b be integers. If both a and b have the form 4k+1 (where k is an integer), then ab also has the form 4k+1.

b.)The lemma from part a generalizes two products of integers of the form 4k+1. State and prove the generalized lemma.

c.) Prove that any natural number of the form 4k+3 has a prime factor of the form 4k+3.

Solutions

Expert Solution


Related Solutions

Let a and b be positive integers, and let d be their greatest common divisor. Prove...
Let a and b be positive integers, and let d be their greatest common divisor. Prove that there are infinitely many integers x and y such that ax+by = d. Next, given one particular solution x0 and y0 of this equation, show how to find all the solutions.
Let a and b be integers which are not both zero. (a) If c is an...
Let a and b be integers which are not both zero. (a) If c is an integer such that there exist integers x and y with ax+by = c, prove that gcd(a, b) | c. (b) If there exist integers x and y such that ax + by = 1, explain why gcd(a, b) = 1. (c) Let d = gcd(a,b), and write a = da′ and b = db′ for some a′,b′ ∈ Z. Prove that gcd(a′,b′) = 1.
8.Let a and b be integers and d a positive integer. (a) Prove that if d...
8.Let a and b be integers and d a positive integer. (a) Prove that if d divides a and d divides b, then d divides both a + b and a − b. (b) Is the converse of the above true? If so, prove it. If not, give a specific example of a, b, d showing that the converse is false. 9. Let a, b, c, m, n be integers. Prove that if a divides each of b and c,...
Theorem 3.4. Let a and b be integers, not both zero, and suppose that b =...
Theorem 3.4. Let a and b be integers, not both zero, and suppose that b = aq + r for some integers q and r. Then gcd(b, a) = gcd(a, r). a) Suppose that for some integer k > d, k | a and k | r. Show that k | b also. Deduce that k is a common divisor of b and a. b) Explain how part (a) contradicts the assumption that d = gcd(b, a).
Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
Let A = Z and let a, b ∈ A. Prove if the following binary operations...
Let A = Z and let a, b ∈ A. Prove if the following binary operations are (i) commutative, (2) if they are associative and (3) if they have an identity (if the operations has an identity, give the identity or show that the operation has no identity). (a) (3 points) f(a, b) = a + b + 1 (b) (3 points) f(a, b) = a(b + 1) (c) (3 points) f(a, b) = x2 + xy + y2
Let A and B be finite sets. Prove the following: (a) |A∪B|=|A|+|B|−|A∩B| (b) |A × B|...
Let A and B be finite sets. Prove the following: (a) |A∪B|=|A|+|B|−|A∩B| (b) |A × B| = |A||B| (c) |{f : A → B}| = |B||A|
Prove the following. Let T denote the integers divisible by three. Find a bijection f :...
Prove the following. Let T denote the integers divisible by three. Find a bijection f : Z→T (Z denotes all integers).
Let A be an infinite set and let B ⊆ A be a subset. Prove: (a)...
Let A be an infinite set and let B ⊆ A be a subset. Prove: (a) Assume A has a denumerable subset, show that A is equivalent to a proper subset of A. (b) Show that if A is denumerable and B is infinite then B is equivalent to A.
Let x and y be integers such that 17 | (3x +5y). Prove that 17 |...
Let x and y be integers such that 17 | (3x +5y). Prove that 17 | (8x + 19y).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT