Question

In: Advanced Math

Suppose A = {(a, b)| a, b ∈ Z} = Z × Z. Let R be...

Suppose A = {(a, b)| a, b ∈ Z} = Z × Z. Let R be the relation define on A where (a, b)R(c, d) means that 2 a + d = b + 2 c.

a. Prove that R is an equivalence relation.

b. Find the equivalence classes [(−1, 1)] and [(−4, −2)].

Solutions

Expert Solution


Related Solutions

Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if...
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if and only if ad=bc. (a) Show that R is an equivalence relation. (b) What is the equivalence class of (1,2)? List out at least five elements of the equivalence class. (c) Give an interpretation of the equivalence classes for R. [Here, an interpretation is a description of the equivalence classes that is more meaningful than a mere repetition of the definition of R. Hint:...
Let Z[ √ 2] = {a + b √ 2 | a, b ∈ Z}. (a)...
Let Z[ √ 2] = {a + b √ 2 | a, b ∈ Z}. (a) Prove that Z[ √ 2] is a subring of R. (b) Find a unit in Z[ √ 2] that is different than 1 or −1.
9.2.6 Exercise. Let R = Z and let I be the ideal 12Z of R. (i)...
9.2.6 Exercise. Let R = Z and let I be the ideal 12Z of R. (i) List explicitly all the ideals A of R with I ⊆ A. (ii) Write out all the elements of R/I (these are cosets). (iii) List explicitly the set of all ideals B of R/I (these are sets of cosets). (iv) Let π: R → R/I be the natural projection. For each ideal A of R such that I ⊆ A, write out π(A) explicitly...
Let G = Z x Z and H = {(a, b) in Z x Z |...
Let G = Z x Z and H = {(a, b) in Z x Z | 8 divides a+b} a. Prove directly that H is a normal subgroup in G (use the fact that closed under composition and inverses) b. Prove that G/H is isomorphic to Z8. c. What is the index of [G : H]?
Let R=R+. Define: a+b = ab ; a*b = a^(lnb) 1. Is (R+, +, *) a...
Let R=R+. Define: a+b = ab ; a*b = a^(lnb) 1. Is (R+, +, *) a ring? 2. If so is it commutative? 3. Does it have an identity?
Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information...
Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information to prove thatL(f)≤L(g)andU(f)≤U(g). Information: g : [0, 1] —> R be defined by if x=0, g(x)=1; if x=m/n (m and n are positive integer with no common factor), g(x)=1/n; if x doesn't belong to rational number, g(x)=0 g is discontinuous at every rational number in[0,1]. g is Riemann integrable on [0,1] based on the fact that Suppose h:[a,b]→R is continuous everywhere except at a...
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A...
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A countable?
6. Let R be a relation on Z x Z such that for all ordered pairs...
6. Let R be a relation on Z x Z such that for all ordered pairs (a, b),(c, d) ∈ Z x Z, (a, b) R (c, d) ⇔ a ≤ c and b|d . Prove that R is a partial order relation.
let R = Z x Z. P be the prime ideal {0} x Z and S...
let R = Z x Z. P be the prime ideal {0} x Z and S = R - P. Prove that S^-1R is isomorphic to Q.
(V) Let A ⊆ R, B ⊆ R, A 6= ∅, B 6= ∅ be two...
(V) Let A ⊆ R, B ⊆ R, A 6= ∅, B 6= ∅ be two bounded subset of R. Define a set A − B := {a − b : a ∈ A and b ∈ B}. Show that sup(A − B) = sup A − inf B and inf(A − B) = inf A − sup B
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT