Question

In: Advanced Math

Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove...

Let G be a group. For each x ∈ G and a,b ∈ Z+

a) prove that xa+b = xaxb

b) prove that (xa)-1 = x-a

c) establish part a) for arbitrary integers a and b in Z (positive, negative or zero)

Solutions

Expert Solution


Related Solutions

Let G be a group,a;b are elements of G and m;n are elements of Z. Prove...
Let G be a group,a;b are elements of G and m;n are elements of Z. Prove (a). (a^m)(a^n)=a^(m+n) (b). (a^m)^n=a^(mn)
Let A and B be groups, and consider the product group G=A x B. (a) Prove...
Let A and B be groups, and consider the product group G=A x B. (a) Prove that N={(ea,b) E A x B| b E B} is a subgroup. (b) Prove that N is isomorphic to B (c) Prove that N is a normal subgroup of G (d) Prove that G|N is isomorphic to A
Let G = Z x Z and H = {(a, b) in Z x Z |...
Let G = Z x Z and H = {(a, b) in Z x Z | 8 divides a+b} a. Prove directly that H is a normal subgroup in G (use the fact that closed under composition and inverses) b. Prove that G/H is isomorphic to Z8. c. What is the index of [G : H]?
Prove Proposition 6.10 (Let f : X → Y and g : Y → Z be...
Prove Proposition 6.10 (Let f : X → Y and g : Y → Z be one to one and onto functions. Then g ◦ f : X → Z is one to one and onto; and (g ◦ f)−1 = f−1 ◦ g−1 ).
Let A = Z and let a, b ∈ A. Prove if the following binary operations...
Let A = Z and let a, b ∈ A. Prove if the following binary operations are (i) commutative, (2) if they are associative and (3) if they have an identity (if the operations has an identity, give the identity or show that the operation has no identity). (a) (3 points) f(a, b) = a + b + 1 (b) (3 points) f(a, b) = a(b + 1) (c) (3 points) f(a, b) = x2 + xy + y2
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is...
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is the direct product of U and V (where V a subgroup of G) if only if there is a homomorphism f : G → U with    f|U = IdU
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A...
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A countable?
Let f: X→Y and g: Y→Z be both onto. Prove that g◦f is an onto function...
Let f: X→Y and g: Y→Z be both onto. Prove that g◦f is an onto function Let f: X→Y and g: Y→Z be both onto. Prove that f◦g is an onto function Let f: X→Y and g: Y→Z be both one to one. Prove that g◦f is an one to one function Let f: X→Y and g: Y→Z be both one to one. Prove that f◦g is an one to one function
Let G be a Group. The center of, denoted by Z(G), is defined to be the...
Let G be a Group. The center of, denoted by Z(G), is defined to be the set of all elements of G that with every element of G. Symbolically, we have Z(G) = {x in G | ax=xa for all a in G}. (a) Prove that Z(G) is a subgroup of G. (b) Prove that Z(G) is an Abelian group.
Let G be a cyclic group generated by an element a. a) Prove that if an...
Let G be a cyclic group generated by an element a. a) Prove that if an = e for some n ∈ Z, then G is finite. b) Prove that if G is an infinite cyclic group then it contains no nontrivial finite subgroups. (Hint: use part (a))
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT