Question

In: Statistics and Probability

A random sample of n=100 observations produced a mean of x̅=28 with a standard deviation of s=6.

Note: Each bound should be rounded to three decimal places.

A random sample of n=100 observations produced a mean of x̅=28 with a standard deviation of s=6.

(a) Find a 90% confidence interval for ?
Lower-bound:  Upper-bound:

(b) Find a 99% confidence interval for ?
Lower-bound:  Upper-bound:

(c) Find a 95% confidence interval for ?
Lower-bound:  Upper-bound:

Solutions

Expert Solution

n=100, =28, s=6.

a)

formula for confidence inerval is

Where tc is the t critical value for c=90% with df=99

tc= 1.66

(28−0.996 < < 28+0.996)

= (27.004, 28.996)

Lower-bound: 27.004

Upper-bound: 28.996

b)

formula for confidence inerval is

Where tc is the t critical value for c=99% with df=99

tc= 2.626

(28−1.576 < < 28+1.576)

= (26.424 , 29.576)

Lower-bound:  26.424

Upper-bound: 29.576

c)

formula for confidence inerval is

Where tc is the t critical value for c=95% with df=99

tc= 1.984.

( 28−1.191 < < 28+1.191 )

= (26.809 , 29.191)

Lower-bound:  26.809

Upper-bound:  29.191


Related Solutions

A random sample of n=100 observations produced a mean of x̅=33 with a standard deviation of s=5.
A random sample of n=100 observations produced a mean of x̅=33 with a standard deviation of s=5. (a) Find a 95% confidence interval for μ Lower-bound: Upper-bound: (b) Find a 99% confidence interval for μ Lower-bound: Upper-bound:
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4.
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4. (a) Find a 90% confidence interval for μ, z for 90 percentile : 1.28 (b) Find a 95% confidence interval for μ, z for 95 percentile : 1.75 (c) Find a 99% confidence interval for μ, z for 99 percentile : 2.33
A random sample of 92 observations produced a mean xequals=25.9 and a standard deviation s=2.6 a....
A random sample of 92 observations produced a mean xequals=25.9 and a standard deviation s=2.6 a. Find a​ 95% confidence interval forμ. b. Find a​ 90% confidence interval for μ c. Find a​ 99% confidence interval for μ. ​(Use integers or decimals for any numbers in the expression. Round to two decimal places as​ needed.)
A random sample of 88 observations produced a mean x=25.8 and a standard deviation s=2.6. a....
A random sample of 88 observations produced a mean x=25.8 and a standard deviation s=2.6. a. Find a​ 95% confidence interval for mu. b. Find a​ 90% confidence interval for mu. c. Find a​ 99% confidence interval for mu.
A random sample of 91 observations produced a mean x=26.2 and a standard deviation s=2.6 a....
A random sample of 91 observations produced a mean x=26.2 and a standard deviation s=2.6 a. Find a​ 95% confidence interval for μ. b. Find a​ 90% confidence interval for μ. c. Find a​ 99% confidence interval for μ.
A random sample of 91 observations produced a mean x̄ = 25.6 and a standard deviation...
A random sample of 91 observations produced a mean x̄ = 25.6 and a standard deviation s = 2.6. a. find a 95% confidence interval for μ. b. find a 90% confidence interval for μ. c. find a 99% confidence interval for μ.
A random sample of 91 observations produced a mean xequals25.7 and a standard deviation sequals2.6. a....
A random sample of 91 observations produced a mean xequals25.7 and a standard deviation sequals2.6. a. Find a​ 95% confidence interval for mu. b. Find a​ 90% confidence interval for mu. c. Find a​ 99% confidence interval for mu.
1. A random sample of 81 observations produced a mean value of 89 and standard deviation...
1. A random sample of 81 observations produced a mean value of 89 and standard deviation of 5.5. The 95% confidence interval for the population mean μ is between? a) 88.302 and 89.698 b) 87.302 and 90.698 c) 85.802 and 91.198 d) 87.995 and 90.005 e) 87.802 and 90.198
A random sample of 100 observations produced a sample mean of 32. Find the critical and...
A random sample of 100 observations produced a sample mean of 32. Find the critical and observed values of z for the following test of hypothesis using α = 0.025 . The population standard deviation is known to be 5 and the population distribution is normal. H 0 : μ = 28 versus H 1 : μ ≠ 28 .
a random sample of 100 observations from a population. with standard deviation 60 yielded a sample...
a random sample of 100 observations from a population. with standard deviation 60 yielded a sample mean of 110. A. test the null hypothesis that m = 100 and the alternative hypothesis m > 100 using alpha = .05 and interpret the results b. test the null against the alternative hypothesis that m isn't equal to 110. using alpha = .05 and interpret the results c. compare the p values of the two tests you conducted. Explain why the results...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT