In: Statistics and Probability
A random sample of 92 observations produced a mean xequals=25.9 and a standard deviation s=2.6
a. Find a 95% confidence interval forμ.
b. Find a 90% confidence interval for μ
c. Find a 99% confidence interval for μ.
(Use integers or decimals for any numbers in the expression. Round to two decimal places as needed.)
Solution :
Given that,
= 25.9
s = 2.6
n = 92
Degrees of freedom = df = n - 1 = 92 - 1 = 91
A ) At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
t /2,df = t0.025,24 =1.986
Margin of error = E = t/2,df * (s /n)
= 1.986 * ( 2.6/ 92)
= 0.54
Margin of error = 0.54
The 95% confidence interval estimate of the population mean is,
- E < < + E
25.9- 0.54 < < 25.9 + 0.45
25.36 < < 26.40
(25.36, 26.40)
B) At 90% confidence level the t is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
t /2,df = t0.05,91 =1.662
Margin of error = E = t/2,df * (s /n)
= 1.662* ( 2.6/ 92)
= 0.45
Margin of error = 0.45
The 90% confidence interval estimate of the population mean is,
- E < < + E
25.9- 0.45 < < 25.9 + 0.45
25.45 < < 26.35
(25.45, 26.35)
c ) At 99% confidence level the t is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
t /2,df = t0.005,91 =2.797
Margin of error = E = t/2,df * (s /n)
= 2.631* ( 2.6/ 92)
= 0.71
Margin of error = 0.71
The 99% confidence interval estimate of the population mean is,
- E < < + E
25.9- 0.71 < < 25.9 + 0.71
25.19 < < 26.61
(25.19, 26.61)