Question

In: Statistics and Probability

A random sample of 92 observations produced a mean xequals=25.9 and a standard deviation s=2.6 a....

A random sample of 92 observations produced a mean xequals=25.9 and a standard deviation s=2.6

a. Find a​ 95% confidence interval forμ.

b. Find a​ 90% confidence interval for μ

c. Find a​ 99% confidence interval for μ.

​(Use integers or decimals for any numbers in the expression. Round to two decimal places as​ needed.)

Solutions

Expert Solution


Solution :

Given that,

= 25.9

s = 2.6

n = 92

Degrees of freedom = df = n - 1 = 92 - 1 = 91

A ) At 95% confidence level the t is ,

  = 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

t /2,df = t0.025,24 =1.986

Margin of error = E = t/2,df * (s /n)

= 1.986 * ( 2.6/ 92)

= 0.54

Margin of error = 0.54

The 95% confidence interval estimate of the population mean is,

- E < < + E

25.9- 0.54 < < 25.9 + 0.45

25.36 < < 26.40

(25.36, 26.40)

B) At 90% confidence level the t is ,

= 1 - 90% = 1 - 0.90 = 0.10

/ 2 = 0.10 / 2 = 0.05

t /2,df = t0.05,91 =1.662

Margin of error = E = t/2,df * (s /n)

= 1.662* ( 2.6/ 92)

= 0.45

Margin of error = 0.45

The 90% confidence interval estimate of the population mean is,

- E < < + E

25.9- 0.45 < < 25.9 + 0.45

25.45 < < 26.35

(25.45, 26.35)

c )  At 99% confidence level the t is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

t /2,df = t0.005,91 =2.797

Margin of error = E = t/2,df * (s /n)

= 2.631* ( 2.6/ 92)

= 0.71

Margin of error = 0.71

The 99% confidence interval estimate of the population mean is,

- E < < + E

25.9- 0.71 < < 25.9 + 0.71

25.19 < < 26.61

(25.19, 26.61)


Related Solutions

A random sample of 88 observations produced a mean x=25.8 and a standard deviation s=2.6. a....
A random sample of 88 observations produced a mean x=25.8 and a standard deviation s=2.6. a. Find a​ 95% confidence interval for mu. b. Find a​ 90% confidence interval for mu. c. Find a​ 99% confidence interval for mu.
A random sample of 91 observations produced a mean x=26.2 and a standard deviation s=2.6 a....
A random sample of 91 observations produced a mean x=26.2 and a standard deviation s=2.6 a. Find a​ 95% confidence interval for μ. b. Find a​ 90% confidence interval for μ. c. Find a​ 99% confidence interval for μ.
A random sample of n=100 observations produced a mean of x̅=33 with a standard deviation of s=5.
A random sample of n=100 observations produced a mean of x̅=33 with a standard deviation of s=5. (a) Find a 95% confidence interval for μ Lower-bound: Upper-bound: (b) Find a 99% confidence interval for μ Lower-bound: Upper-bound:
A random sample of n=100 observations produced a mean of x̅=28 with a standard deviation of s=6.
Note: Each bound should be rounded to three decimal places. A random sample of n=100 observations produced a mean of x̅=28 with a standard deviation of s=6. (a) Find a 90% confidence interval for ?Lower-bound:  Upper-bound: (b) Find a 99% confidence interval for ?Lower-bound:  Upper-bound: (c) Find a 95% confidence interval for ?Lower-bound:  Upper-bound:
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4.
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4. (a) Find a 90% confidence interval for μ, z for 90 percentile : 1.28 (b) Find a 95% confidence interval for μ, z for 95 percentile : 1.75 (c) Find a 99% confidence interval for μ, z for 99 percentile : 2.33
A random sample of 91 observations produced a mean x̄ = 25.6 and a standard deviation...
A random sample of 91 observations produced a mean x̄ = 25.6 and a standard deviation s = 2.6. a. find a 95% confidence interval for μ. b. find a 90% confidence interval for μ. c. find a 99% confidence interval for μ.
A random sample of 91 observations produced a mean xequals25.7 and a standard deviation sequals2.6. a....
A random sample of 91 observations produced a mean xequals25.7 and a standard deviation sequals2.6. a. Find a​ 95% confidence interval for mu. b. Find a​ 90% confidence interval for mu. c. Find a​ 99% confidence interval for mu.
1. A random sample of 81 observations produced a mean value of 89 and standard deviation...
1. A random sample of 81 observations produced a mean value of 89 and standard deviation of 5.5. The 95% confidence interval for the population mean μ is between? a) 88.302 and 89.698 b) 87.302 and 90.698 c) 85.802 and 91.198 d) 87.995 and 90.005 e) 87.802 and 90.198
(4.1) A random sample of 89 observations produced a mean x = 26.1 and a standard...
(4.1) A random sample of 89 observations produced a mean x = 26.1 and a standard deviation s = 2.4 a. Find a? 95% confidence interval for ?. b. Find a? 90% confidence interval for ?. c. Find a? 99% confidence interval for ?. a. The? 95% confidence interval is (----,----) ?(Use integers or decimals for any numbers in the expression. Round to two decimal places as? needed.) b. The? 90% confidence interval is ----,------. (Use integers or decimals for...
A random sample of 105 observations produced a sample mean of 33. Find the critical and...
A random sample of 105 observations produced a sample mean of 33. Find the critical and observed values of z for the following test of hypothesis using α=0.025. The population standard deviation is known to be 9 and the population distribution is normal. H0: μ=28 versus H1: μ>28. Round your answers to two decimal places. zcritical = zobserved =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT