In: Statistics and Probability
A random sample of 88 observations produced a mean x=25.8 and a standard deviation s=2.6.
a. Find a 95% confidence interval for mu.
b. Find a 90% confidence interval for mu.
c. Find a 99% confidence interval for mu.
Solution :
Given that,
a.
t /2,df = 1.988
Margin of error = E = t/2,df * (s /n)
= 1.988 * (2.6 / 88)
Margin of error = E = 0.6
The 95% confidence interval estimate of the population mean is,
- E < < + E
25.8 - 0.6 < < 25.8 + 0.6
25.2 < < 26.4
(25.2 , 26.4)
b.
t /2,df = 1.663
Margin of error = E = t/2,df * (s /n)
= 1.663 * (2.6 / 88)
Margin of error = E = 0.5
The 90% confidence interval estimate of the population mean is,
- E < < + E
25.8 - 0.5 < < 25.8 + 0.5
25.3 < < 26.3
(25.3 , 26.3)
c.
t /2,df = 2.634
Margin of error = E = t/2,df * (s /n)
= 2.634 * (2.6 / 88)
Margin of error = E = 0.7
The 99% confidence interval estimate of the population mean is,
- E < < + E
25.8 - 0.7 < < 25.8 + 0.7
25.1 < < 26.5
(25.1 , 26.5)