In: Statistics and Probability
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4.
(a) Find a 90% confidence interval for μ, z for 90 percentile : 1.28
(b) Find a 95% confidence interval for μ, z for 95 percentile : 1.75
(c) Find a 99% confidence interval for μ, z for 99 percentile : 2.33
Point estimate = sample mean = = 25
Population standard deviation = = 4
Sample size = n = 100
a)
At 90% confidence level the z is ,
z = 1.28
Margin of error = E = Z/2* ( /√n)
=1.28 * (4 / √ 100 )
= 0.512
At 90% confidence interval estimate of the population mean is,
- E < < + E
25 - 0.512 < < 25 + 0.512
24.488 < < 25.512
( 24.488 , 25.512 )
b)
At 95% confidence level the z is ,
z = 1.75
Margin of error = E = Z/2* ( /√n)
=1.75 * (4 / √ 100 )
= 0.70
At 95% confidence interval estimate of the population mean is,
- E < < + E
25 - 0.70 < < 25 + 0.70
24.30 < < 25.70
( 23.30 , 25.70 )
c)
At 99% confidence level the z is ,
z = 2.33
Margin of error = E = Z/2* ( /√n)
= 2.33 * (4 / √ 100 )
= 0.932
At 99% confidence interval estimate of the population mean is,
- E < < + E
25 - 0.932 < < 25 + 0.932
24.068 < < 25.932
( 24.068 , 25.932 )