In: Statistics and Probability
A random sample of
91
observations produced a mean
x=26.2
and a standard deviation
s=2.6
a. Find a 95% confidence interval for
μ.
b. Find a 90% confidence interval for
μ.
c. Find a 99% confidence interval for
μ.
Solution :
(a)
t /2,df = 1.987
Margin of error = E = t/2,df * (s /n)
= 1.987 * (2.6 / 91)
Margin of error = E = 0.5
The 95% confidence interval estimate of the population mean is,
- E < < + E
26.2 - 0.5 < < 26.2 + 0.5
25.7 < < 26.7
(25.7 , 26.7)
(b)
t /2,df = 1.662
Margin of error = E = t/2,df * (s /n)
= 1.662 * (2.6 / 91)
Margin of error = E = 0.5
The 90% confidence interval estimate of the population mean is,
- E < < + E
26.2 - 0.5 < < 26.2 + 0.5
25.7 < < 26.7
(25.7 , 26.7)
(c)
t /2,df = 2.632
Margin of error = E = t/2,df * (s /n)
= 2.632 * (2.6 / 91)
Margin of error = E = 0.7
The 99% confidence interval estimate of the population mean is,
- E < < + E
26.2 - 0.7 < < 26.2 + 0.7
25.5 < < 26.9
(25.5 , 26.9)