In: Math
A random sample of n=100 observations produced a mean of x⎯⎯=30 with a standard deviation of s=5.
(a) Find a 99% confidence interval for μ
Lower-bound: Upper-bound:
(b) Find a 95% confidence interval for μ
Lower-bound: Upper-bound:
(c) Find a 90% confidence interval for μ
Lower-bound: Upper-bound:
Solution :
Given that,
= 30
s = 5
n = 100
Degrees of freedom = df = n - 1 =100 - 1 = 99
a ) At 99% confidence level the t is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
t /2 df = t0.005,99 = 2.626
Margin of error = E = t/2,df * (s /n)
= 2.626 * (5 / 100)
= 1.313
The 99% confidence interval estimate of the population mean is,
- E < < + E
30 - 1.313 < < 30 + 1.313
28.687 < < 31.313
Lower-bound: =28.687
Upper-bound: = 31.313
b ) At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
t /2,df = t0.025,99 = 1.984
Margin of error = E = t/2,df * (s /n)
= 1.984 * (5 / 100)
= 0.992
The 95% confidence interval estimate of the population mean is,
- E < < + E
30 - 0.992 < < 30 + 0.992
29.008 < < 30.992
Lower-bound: = 29.008
Upper-bound: = 30.992
c ) At 90% confidence level the t is ,
= 1 - 90% = 1 - 0.90 = 0.1
/ 2 = 0.1 / 2 = 0.05
t /2,df = t0.05,99 = 1.660
Margin of error = E = t/2,df * (s /n)
= 1.660 * (5 / 100)
= 0.830
The 90% confidence interval estimate of the population mean is,
- E < < + E
30 - 0.830 < < 30 + 0.830
29.170 < < 30.830
Lower-bound: =29.170
Upper-bound: = 30.830