Question

In: Math

Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)

Consider the following differential equation:

(t^2)y'-y=(y^2), where y'=dy/dt.

(a) find y(t) if y(1)=1/2

(b)find limt->infinityy(t)

Solutions

Expert Solution

Solution-

Find the solution for the DE given,

use variable separation,

integrate both sides,

Therefore y(t) is

Here k is constant.

(a)

Find the value for k,

y(t) is,

(b)

so,

for x-i>nfinite y(t)->-1

Value for the limit is -1.


Related Solutions

Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1
Consider the system modeled by the differential equation                               dy/dt - y = t    with initial condition y(0) = 1 the exact solution is given by y(t) = 2et − t − 1   Note, the differential equation dy/dt - y =t can be written as                                               dy/dt = t + y using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt                               (y(t + Dt) – y(t))/ Dt = (t + y)                                y(t + Dt) =...
Use Laplace transformations to solve the following differential equations: dy(t)/dt + a y(t) = b; I.C.s...
Use Laplace transformations to solve the following differential equations: dy(t)/dt + a y(t) = b; I.C.s y(0) = c d2y(t)/dt2 + 6 dy(t)/dt + 9 y(t) = 0; I.C.s y(0) = 2, dy(0)/dt = 1 d2y(t)/dt2 + 4 dy(t)/dt + 8 y(t) = 0; I.C.s y(0) = 2, dy(0)/dt = 1 d2y(t)/dt2 + 2 dy(t)/dt + y(t) = 3e-2t; I.C.s y(0) = 1, dy(0)/dt = 1
Consider the first-order separable differential equation dy/dx = y(y − 1)^2 where the domain of y...
Consider the first-order separable differential equation dy/dx = y(y − 1)^2 where the domain of y ranges over [0, ∞). (a) Using the partial fraction decomposition 1/(y(y − 1)^2) = 1/y −1/(y − 1) +1/((y − 1)^2) find the general solution as an implicit function of y (do not attempt to solve for y itself as a function of x). (b) Draw a phase diagram for (1). Assuming the initial value y(0) =y0, find the interval of values for y0...
Consider the differential equation dy/dt = 2?square root(absolute value of y) with initial condition y(t0)=y0 •...
Consider the differential equation dy/dt = 2?square root(absolute value of y) with initial condition y(t0)=y0 • For what values of y0 does the Existence Theorem apply? • For what values of y0 does the Uniqueness theorem apply? • Verify that y1(t) = 0 solves the initial value problem with y0 = 0 • Verify that y2(t) = t2 solves the initial value problem with y0 = 0 • Does this violate the theorems from this section 1.5? Why or why...
6. Consider the initial value problem dy/ dt = t ^2 y , y(1) = 1...
6. Consider the initial value problem dy/ dt = t ^2 y , y(1) = 1 . (a) Use Euler’s method (by hand) to approximate the solution y(t) at t = 2 using ∆t = 1, ∆t = 1/2 and ∆t = 1/4 (use a calculator to approximate the answer for the smallest ∆t). Report your results in a table listing ∆t in one column, and the corresponding approximation of y(2) in the other. (b) The direction field of dy/dt...
find the differential equation of dy/dx = y+y^3
find the differential equation of dy/dx = y+y^3
Consider the following initial value problem dy/dt = 3 − 2*t − 0.5*y, y (0) =...
Consider the following initial value problem dy/dt = 3 − 2*t − 0.5*y, y (0) = 1 We would like to find an approximation solution with the step size h = 0.05. What is the approximation of y(0.1)?
Consider the differential equation dy/dx = y^2 + y - 2 (1) Sketch its phase portrait...
Consider the differential equation dy/dx = y^2 + y - 2 (1) Sketch its phase portrait and classify the critical points. (2) Find the explicit solution of the DE.
Find a differential equation such that a) y -> 2/5 as t->infinity b) y -> -3/7...
Find a differential equation such that a) y -> 2/5 as t->infinity b) y -> -3/7 as t->infinity c) y diverges from 2/5 as t->infinity
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b...
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b are changed so that the point (a,b) moves from one region to another, the type of the linear system changes, that is, a bifurcation occurs. Which of these bifurcations is important for the long-term behavior of solutions? Which of these bifurcations corresponds to a dramatic change in the phase plane or the x(t)and y(t)-graphs?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT