Question

In: Advanced Math

Find a differential equation such that a) y -> 2/5 as t->infinity b) y -> -3/7...

Find a differential equation such that

a) y -> 2/5 as t->infinity

b) y -> -3/7 as t->infinity

c) y diverges from 2/5 as t->infinity

Solutions

Expert Solution


Related Solutions

Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)
Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)
Find the general solution of this differential equation: y'''+y''+y'+y=4e^(-t)+4sin(t)
Find the general solution of this differential equation: y'''+y''+y'+y=4e^(-t)+4sin(t)
find the differential equation of dy/dx = y+y^3
find the differential equation of dy/dx = y+y^3
Let   y(t) = (1 + t)^2 solution of the differential equation y´´ (t) + p (t) y´...
Let   y(t) = (1 + t)^2 solution of the differential equation y´´ (t) + p (t) y´ (t) + q (t) y (t) = 0 (*) If the Wronskian of two solutions of (*) equals three. (a) ffind p(t) and q(t) (b) Solve y´´ (t) + p (t) y´ (t) + q (t) y (t) = 1 + t
find the general solution of the given differential equation. 1. y'' + y = tan t,...
find the general solution of the given differential equation. 1. y'' + y = tan t, 0 < t < π/2 2. y'' + 4y' + 4y = t-2 e-2t , t > 0 find the solution of the given initial value problem. 3. y'' + y' − 2y = 2t, y(0) = 0, y'(0) = 1
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3...
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3 ( Please With Steps)
solve differential equation. y" + 9y = 18t^2 + 9t + 1 ; y(0) = 5/3...
solve differential equation. y" + 9y = 18t^2 + 9t + 1 ; y(0) = 5/3 ; y'(0) = 10
Find a particular solution to the non-homogeneous differential equation: (a) y'' − 4y = 4t^2 (b)...
Find a particular solution to the non-homogeneous differential equation: (a) y'' − 4y = 4t^2 (b) y '' − 4y = sin(2t) (c) y '' + 4y = sin(2t) (d) y '' + y = cos(t)
1. The differential equation y''+4y=f(t) and y'(0)=y(0)=0 a. Find the transfer function and impulse response. b....
1. The differential equation y''+4y=f(t) and y'(0)=y(0)=0 a. Find the transfer function and impulse response. b. If f(t)=u(t)-u(t-1). Find the y(t) by convolution and Laplace techniques. u(t) is unit step function. c. If f(t)= cos(t) ; find the y(t) by convolution and Laplace techniques. 2. The differential equation y''+3y'+2y=e^(-3t) and y'(0)=y(0)=0 a. Find the system transfer function and impulse response. b. Find the y(t) by convolution and Laplace techniques. 3. y''+3y'+2y=f(t) and y'(0)=y(0)=0 Plot y(t) without any calculations and write...
Find the general solution of the differential equation y′′+36y=13sec^2(6t), 0<t<π/12.
Find the general solution of the differential equation y′′+36y=13sec^2(6t), 0<t<π/12.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT