Question

In: Math

Consider the differential equation dy/dx = y^2 + y - 2 (1) Sketch its phase portrait...

Consider the differential equation dy/dx = y^2 + y - 2 (1) Sketch its phase portrait and classify the critical points. (2) Find the explicit solution of the DE.

Solutions

Expert Solution

I hope you understood it well.Please read every line in the solutions so that you can understand it in a better manner.If you have any queries please let me know.


Related Solutions

Sketch the direction field of the equation dy/dx=y-4y^3. Sketch the phase portrait. Find the equilibrium solutions...
Sketch the direction field of the equation dy/dx=y-4y^3. Sketch the phase portrait. Find the equilibrium solutions and classify each equilibrium as stable, unstable or semi-stable. Sketch typical solutions of the equation.
Given dy/dx = y^2 − 4y + 4 (a) Sketch the phase line (portrait) and classify...
Given dy/dx = y^2 − 4y + 4 (a) Sketch the phase line (portrait) and classify all of the critical (equilibrium) points. Use arrows to indicated the flow on the phase line (away or towards a critical point). (b) Next to your phase line, sketch the graph of solutions satisfying the initial conditions: y(0)=0, y(0)=1, y(0)=2, y(0)=3, y(0)=4. (c) Find lim y(x) x→∞ for the solution satisfying the inital condition y(0) = 2. (d) State the solution to the initial-value...
Consider the first-order separable differential equation dy/dx = y(y − 1)^2 where the domain of y...
Consider the first-order separable differential equation dy/dx = y(y − 1)^2 where the domain of y ranges over [0, ∞). (a) Using the partial fraction decomposition 1/(y(y − 1)^2) = 1/y −1/(y − 1) +1/((y − 1)^2) find the general solution as an implicit function of y (do not attempt to solve for y itself as a function of x). (b) Draw a phase diagram for (1). Assuming the initial value y(0) =y0, find the interval of values for y0...
1. (a) Sketch the slope field for the given differential equation: dy/dx = 2? (b) Find...
1. (a) Sketch the slope field for the given differential equation: dy/dx = 2? (b) Find the particular solution of the differential equation that satisfies the initial condition y(0) = 4 (c) What is the value of y when x = 1/2 2. (a) Find the general solution of the given differential equation: dy/dx = ysinx = ????? 2 (b) Find the particular solution of the differential equation that satisfies the initial condition ? = 2; ?ℎ?? ? = π/2
find the differential equation of dy/dx = y+y^3
find the differential equation of dy/dx = y+y^3
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3...
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3 ( Please With Steps)
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Given the differential equation dy/dx =x. With intitial condition y(1)=0.5. Use eulers method with dx =...
Given the differential equation dy/dx =x. With intitial condition y(1)=0.5. Use eulers method with dx = 0.1 , to approximate the value of y when x=1.8
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
1.) (10pts) Consider the following differential equation: (x^2)(dy/dx)=2x(sqrt(y))+(x^3)(sqrt(y)) a)Determine whether the equation is separable (S), linear...
1.) (10pts) Consider the following differential equation: (x^2)(dy/dx)=2x(sqrt(y))+(x^3)(sqrt(y)) a)Determine whether the equation is separable (S), linear (L), autonomous (A), or non-linear (N). (An equation could be more than one of these types.) b)Identify the region of the plane where the Chapter 1 Existence and Uniqueness Theorem guarantees a unique solution exists at an initial condition (x0, y0). 2.(12pts) Consider the IVP: y'+y=y/t , y(2) = 0 For each of the functions y1(t)and y2(t) below, decide if it is a solution...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT