Question

In: Math

find the differential equation of dy/dx = y+y^3

find the differential equation of dy/dx = y+y^3

Solutions

Expert Solution


Related Solutions

Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3...
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3 ( Please With Steps)
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
Solve these first-order Differential Equations using an integrating factor. 1. dy/dx+2xy=0 2. dy/dx-y=5 3. dy/dx+y=x 4....
Solve these first-order Differential Equations using an integrating factor. 1. dy/dx+2xy=0 2. dy/dx-y=5 3. dy/dx+y=x 4. (x)dy/dx+(x+1)y=3/x 5. (x^2)dy/dx=e^x-2xy
Given the differential equation dy/dx =x. With intitial condition y(1)=0.5. Use eulers method with dx =...
Given the differential equation dy/dx =x. With intitial condition y(1)=0.5. Use eulers method with dx = 0.1 , to approximate the value of y when x=1.8
Consider the curve given by the equation y^2 - 2x^2y = 3 a) Find dy/dx. b)...
Consider the curve given by the equation y^2 - 2x^2y = 3 a) Find dy/dx. b) Write an equation for the line tangent to the curve at the point (1, -1). c) Find the coordinates of all points on the curve at which the line tangent to the curve at that point is horizontal. d) Evaluate d 2y /dx2 at the point (1, -1).
Consider the first-order separable differential equation dy/dx = y(y − 1)^2 where the domain of y...
Consider the first-order separable differential equation dy/dx = y(y − 1)^2 where the domain of y ranges over [0, ∞). (a) Using the partial fraction decomposition 1/(y(y − 1)^2) = 1/y −1/(y − 1) +1/((y − 1)^2) find the general solution as an implicit function of y (do not attempt to solve for y itself as a function of x). (b) Draw a phase diagram for (1). Assuming the initial value y(0) =y0, find the interval of values for y0...
Consider the differential equation dy/dx = y^2 + y - 2 (1) Sketch its phase portrait...
Consider the differential equation dy/dx = y^2 + y - 2 (1) Sketch its phase portrait and classify the critical points. (2) Find the explicit solution of the DE.
1. (a) Sketch the slope field for the given differential equation: dy/dx = 2? (b) Find...
1. (a) Sketch the slope field for the given differential equation: dy/dx = 2? (b) Find the particular solution of the differential equation that satisfies the initial condition y(0) = 4 (c) What is the value of y when x = 1/2 2. (a) Find the general solution of the given differential equation: dy/dx = ysinx = ????? 2 (b) Find the particular solution of the differential equation that satisfies the initial condition ? = 2; ?ℎ?? ? = π/2
dy/dx+(y/2x)=(x/(y^3))
dy/dx+(y/2x)=(x/(y^3))
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT