Consider the system modeled by the differential equation
dy/dt - y = t with initial condition y(0) = 1
the exact solution is given by y(t) = 2et − t − 1
Note, the differential equation dy/dt - y =t can be written as
dy/dt = t + y
using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt
(y(t + Dt) – y(t))/ Dt = (t + y)
y(t + Dt) =...
Initial value problem : Differential equations:
dx/dt = x + 2y
dy/dt = 2x + y
Initial conditions:
x(0) = 0
y(0) = 2
a) Find the solution to this initial value problem
(yes, I know, the text says that the solutions are
x(t)= e^3t - e^-t and y(x) = e^3t + e^-t
and but I want you to derive these solutions yourself using one
of the methods we studied in chapter 4) Work this part out on paper
to...
1. Consider the initial value problem y′ =1+y/t, y(1)=3
for1≤t≤2.
• Show that y(t) = t ln t + 3t is the solution to the initial
value problem.
• Write a program that implements Euler’s method and the 4th
order Runke-Kutta method for the above initial value problem. Use
your program to solve with h = 0.1 for Euler’s and h = 0.2 for
R-K.
• Include a printout of your code and a printout of the results
at each...
Consider the following initial value problem.
y''−4y = 0,
y(0) = 0, y'(0) = 5
(a) Solve the IVP using the characteristic equation method from
chapter 4.
(b) Solve the IVP using the Laplace transform method from chapter
7.
(Hint: If you don’t have the same final answer for each part, you’ve
done something wrong.)