Question

In: Advanced Math

Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1

Consider the system modeled by the differential equation

                              dy/dt - y = t    with initial condition y(0) = 1

the exact solution is given by y(t) = 2et − t − 1

 

Note, the differential equation dy/dt - y =t can be written as

                                              dy/dt = t + y

using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt

                              (y(t + Dt) – y(t))/ Dt = (t + y)

                               y(t + Dt) = (t + y)Dt + y(t)

                              New Value = change + current value

 

 

  1. Using R implement Euler’s method directly to numerically solve the equation and construct a Table as below – list data to four digits past the decimal point. Submit your R session

               time     ∆t = 0.1           ∆t = 0.0001        Exact Value       %Relative                  %Relative

                                                                                                             Error ∆t = 0.1       Errort = 0.0001                    

                  0

                 0.1

                 0.2

                 0.3

                 0.4

                 0.5

                 0.6

                 0.7

                 0.8

                 0.9

                 1.0

Solutions

Expert Solution


Related Solutions

Consider the following initial value problem dy/dt = 3 − 2*t − 0.5*y, y (0) =...
Consider the following initial value problem dy/dt = 3 − 2*t − 0.5*y, y (0) = 1 We would like to find an approximation solution with the step size h = 0.05. What is the approximation of y(0.1)?
Solve the differential equation Y’(t) = AY(t), with initial condition Y(0) = [1;0] (a 2x1 matrix);...
Solve the differential equation Y’(t) = AY(t), with initial condition Y(0) = [1;0] (a 2x1 matrix); where A = [ 9 , 5 ; -6 , -2 ]. Then, using Euler’s method with step size h=.1 over [ 0 , .5 ] fill in the table with header where the 2x1 matrix Yi is the approximation of the exact solution Y(ti) : t Yi Y(ti) ||Y(ti) – Yi ||
Solve the following initial value problems (1) dy/dt = t + y y(0) = 1 so...
Solve the following initial value problems (1) dy/dt = t + y y(0) = 1 so y(t) = (2)  dy/dt = ty y(0) = 1 so y(t) =
Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)
Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution...
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______ +______ C)...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0)...
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0) = 0, y(0) = 0
find the solution to the differential equation. d^2y/dt^2 - 7dy/dt=0, y(0)=4, y'(0)=7
find the solution to the differential equation. d^2y/dt^2 - 7dy/dt=0, y(0)=4, y'(0)=7
Consider the differential equation y′′(t)+15y′(t)+56y(t)=−210exp(-1t), with initial conditions y(0)=−14, and y′(0)=72. A)Find the Laplace transform of...
Consider the differential equation y′′(t)+15y′(t)+56y(t)=−210exp(-1t), with initial conditions y(0)=−14, and y′(0)=72. A)Find the Laplace transform of the solution Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT