Question

In: Advanced Math

Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1

Consider the system modeled by the differential equation

                              dy/dt - y = t    with initial condition y(0) = 1

the exact solution is given by y(t) = 2et − t − 1

 

Note, the differential equation dy/dt - y =t can be written as

                                              dy/dt = t + y

using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt

                              (y(t + Dt) – y(t))/ Dt = (t + y)

                               y(t + Dt) = (t + y)Dt + y(t)

                              New Value = change + current value

 

 

  1. Using R implement Euler’s method directly to numerically solve the equation and construct a Table as below – list data to four digits past the decimal point. Submit your R session

               time     ∆t = 0.1           ∆t = 0.0001        Exact Value       %Relative                  %Relative

                                                                                                             Error ∆t = 0.1       Errort = 0.0001                    

                  0

                 0.1

                 0.2

                 0.3

                 0.4

                 0.5

                 0.6

                 0.7

                 0.8

                 0.9

                 1.0

Solutions

Expert Solution


Related Solutions

Consider the differential equation dy/dt = 2?square root(absolute value of y) with initial condition y(t0)=y0 •...
Consider the differential equation dy/dt = 2?square root(absolute value of y) with initial condition y(t0)=y0 • For what values of y0 does the Existence Theorem apply? • For what values of y0 does the Uniqueness theorem apply? • Verify that y1(t) = 0 solves the initial value problem with y0 = 0 • Verify that y2(t) = t2 solves the initial value problem with y0 = 0 • Does this violate the theorems from this section 1.5? Why or why...
Consider the following initial value problem dy/dt = 3 − 2*t − 0.5*y, y (0) =...
Consider the following initial value problem dy/dt = 3 − 2*t − 0.5*y, y (0) = 1 We would like to find an approximation solution with the step size h = 0.05. What is the approximation of y(0.1)?
Solve the differential equation Y’(t) = AY(t), with initial condition Y(0) = [1;0] (a 2x1 matrix);...
Solve the differential equation Y’(t) = AY(t), with initial condition Y(0) = [1;0] (a 2x1 matrix); where A = [ 9 , 5 ; -6 , -2 ]. Then, using Euler’s method with step size h=.1 over [ 0 , .5 ] fill in the table with header where the 2x1 matrix Yi is the approximation of the exact solution Y(ti) : t Yi Y(ti) ||Y(ti) – Yi ||
6. Consider the initial value problem dy/ dt = t ^2 y , y(1) = 1...
6. Consider the initial value problem dy/ dt = t ^2 y , y(1) = 1 . (a) Use Euler’s method (by hand) to approximate the solution y(t) at t = 2 using ∆t = 1, ∆t = 1/2 and ∆t = 1/4 (use a calculator to approximate the answer for the smallest ∆t). Report your results in a table listing ∆t in one column, and the corresponding approximation of y(2) in the other. (b) The direction field of dy/dt...
Solve the following initial value problems (1) dy/dt = t + y y(0) = 1 so...
Solve the following initial value problems (1) dy/dt = t + y y(0) = 1 so y(t) = (2)  dy/dt = ty y(0) = 1 so y(t) =
Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)
Consider the following differential equation: (t^2)y'-y=(y^2), where y'=dy/dt. (a) find y(t) if y(1)=1/2 (b)find limt->infinityy(t)
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution...
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______ +______ C)...
3. Consider the IVP: dy =ty^1/3; y(0)=0,t≥0. dt Both y(t) = 0, (the equilibrium solution) and...
3. Consider the IVP: dy =ty^1/3; y(0)=0,t≥0. dt Both y(t) = 0, (the equilibrium solution) and y(t) = ?(1/3t^2?)^3/2 are solutions to this IVP. (a) Show that the trivial solution satisfies the IVP by first verifying that it satisfies the initial condition and then verifying that it satisfies the differential equation. (b) Show that the other solution satisfies the IVP again by first verifying it satisfies the initial condition and then verifying that it satisfies the differential equation. (c) Explain...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT