Question

In: Electrical Engineering

An input transmission line of characteristic impedance Z01 splits off into three identical output transmission lines...

An input transmission line of characteristic impedance Z01 splits off into three identical output transmission lines having characteristic impedance Z02 = 3Z01. This represents a four-port system. Find all 16 of the S parameters for this system. Note: Many of the 16 Sij parameters will be identical. There should be only four values that are distinct.

SHOW WORK!!

Solutions

Expert Solution

References:

https://cds.cern.ch/record/1415639/files/p67.pdf

https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/108101112/lec15.pdf


Related Solutions

Derive aformula for the input impedance of a terminated lossless transmission line.
Derive aformula for the input impedance of a terminated lossless transmission line.
12. At a frequency of 80 MHz, a lossless transmission line has a characteristic impedance of...
12. At a frequency of 80 MHz, a lossless transmission line has a characteristic impedance of 300Ω and a wavelength of 2.5m. (a) Find L; (b) Find C. (c) If the line is terminated with the parallel combination of 200Ω and 5 pF, determine Γ and SWR.
Derive the input impedance of the transmission line of Z0, length ‘l’ and terminated with Zl.
Derive the input impedance of the transmission line of Z0, length ‘l’ and terminated with Zl.
Assuming a characteristic impedance of 75 Ω and a load impedance of 100Ω, find the input...
Assuming a characteristic impedance of 75 Ω and a load impedance of 100Ω, find the input impedance at λ/2, λ and 2λ. How each input impedance will vary for the case of: i) matched line; ii) short-circuit line; iii) open circuit line?
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05...
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05 + j0.1  / km. A load with a power coefficient of 0.8 forward is fed from the end of the line. Line and end of line of energy transmission line According to the intention to keep the voltage between phases constant at 154 kV; a) Active and reactive power values ​​drawn from the beginning and end of the line, b) Calculate the lost...
Explain why the positive sequence impedance of a transmission line and transformer is the same as...
Explain why the positive sequence impedance of a transmission line and transformer is the same as the negative sequence impedance but is different from the zero sequence impedance.
Assuming that the length of a lossless transmission line with the normalized load impedance of zL...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL = ZL/Z0 = 1 + j1 is l = 2.25λz , there are a total of (A) 2 voltage maxima and 2 voltage minima (B) 2 voltage maxima and 3 voltage minima (C) 3 voltage maxima and 2 voltage minima (D) 4 voltage maxima and 4 voltage minima (E) 4 voltage maxima and 5 voltage minima (F) 5 voltage maxima and 4 voltage minima...
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊...
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊ /km and a shunt admittance y = 5.105 x 10-6 < 90 ̊ S/km. The load at the receiving end is 135 MW at unity power factor and 215 kV. Determine the voltage, current, real and reactive power at the sending end and the percent voltage regulation of the line.
Read the input one line at a time until you have read all lines. Now output...
Read the input one line at a time until you have read all lines. Now output these lines in the opposite order from which they were read.. import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class Part12 {       /**    * Your code goes here - see Part0 for an example    * @param r the reader to read from    * @param w the writer to write to    * @throws IOException...
Use the Smith Chart to find the input impedance of a lossless line of length l...
Use the Smith Chart to find the input impedance of a lossless line of length l terminated in a normalised load impedance zL for l = 0.2λ and zL = 1 + j2. How the value of the input impedance will change if l = 0.5λ? (Show all steps on the Smith chart).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT