Question

In: Electrical Engineering

The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05...

The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05 + j0.1  / km.
A load with a power coefficient of 0.8 forward is fed from the end of the line. Line and end of line of energy transmission line
According to the intention to keep the voltage between phases constant at 154 kV;
a) Active and reactive power values ​​drawn from the beginning and end of the line,
b) Calculate the lost power spent on the energy transmission line and the efficiency of the line.

Solutions

Expert Solution


Related Solutions

345 kV, 50 Hz, 3-phase transmission line is 100 km long. The resistance is 0.048 Ω/km...
345 kV, 50 Hz, 3-phase transmission line is 100 km long. The resistance is 0.048 Ω/km and the inductance is 1,24 mH/km. The shunt capacitance is 0.0174 μF/km. The receiving end load is 216 MW with 0.8 power factor lagging at 325 kV. (a) Compute ABCD parameters using π equivalent circuit (b) Sending end voltage VS, (c) Sending end current IS, (d) Efficiency
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊...
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊ /km and a shunt admittance y = 5.105 x 10-6 < 90 ̊ S/km. The load at the receiving end is 135 MW at unity power factor and 215 kV. Determine the voltage, current, real and reactive power at the sending end and the percent voltage regulation of the line.
A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds...
A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds two balanced three-phase loads that are connected in parallel. The first load is Y-connected and has an impedance of 20+j40 Ω per phase. The second load is ∆-connected and has an impedance of 30-j60 Ω per phase. The line-to-line voltage at the load end of the line is 415V. Taking the phase voltage Va as reference, determine: a) The total current per phase from...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL = ZL/Z0 = 1 + j1 is l = 2.25λz , there are a total of (A) 2 voltage maxima and 2 voltage minima (B) 2 voltage maxima and 3 voltage minima (C) 3 voltage maxima and 2 voltage minima (D) 4 voltage maxima and 4 voltage minima (E) 4 voltage maxima and 5 voltage minima (F) 5 voltage maxima and 4 voltage minima...
A 3-phase 60 HZ , 200km transmission line has a series impedance of z= 0.10 +...
A 3-phase 60 HZ , 200km transmission line has a series impedance of z= 0.10 + j0.35 Ω/km and a capacitive reactance of 0.2 x 10 6 Ω-km. At the receiving end, the line delivers 250 MW @230/30θ kV and 0.95 lagging power factor. Determine a) The line impedance and shunt admittance b) The A, B, C , D parameters c) Sending end complex power and power factor d) Is the PF is leading or lagging e) Voltage regulation for...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10 + j0.40 Ohms/km. The load at the receiving end absorbs 15 MVA at 33 kV. Assuming a short line, calculate: (a) the ABCD parameters, (b) the sending-end voltage for a load power factor of 0.95 lagging, (c) the sending-end voltage for the a load power factor of 0.9 leading. (d) For which case is the sending-end voltage higher?
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to...
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to a Y-connected load. The transmission line has an impedance of (0.02+j0.4) Ω/phase, and the load has an impedance of (4+j3) Ω per phase. Determine the;(a)line current (IL) at the load [2Marks] (b)line and phase voltage of the load[2 Marks](c)active power, reactive and apparent power [2 Marks](d) power factor and specify whether it is lagging or leading. [4 Marks]
An input transmission line of characteristic impedance Z01 splits off into three identical output transmission lines...
An input transmission line of characteristic impedance Z01 splits off into three identical output transmission lines having characteristic impedance Z02 = 3Z01. This represents a four-port system. Find all 16 of the S parameters for this system. Note: Many of the 16 Sij parameters will be identical. There should be only four values that are distinct. SHOW WORK!!
A lossless transmission line of length l=0.4? is terminated with a complex load impedance Z_L=60+j50 ?...
A lossless transmission line of length l=0.4? is terminated with a complex load impedance Z_L=60+j50 ? and characteristic impedance (Z_0=50 ?). Use Smith Chart to find: The VSWR on the line; The reflection coefficient at the load and its phase angle; The load admittance of the line Y_L in S; The input impedance of the line in ?; The distance to the first voltage minimum from the load in ?; and The distance to the first voltage maximum from the...
(a) A steel power transmission line has a resistance of 0.0430 Ω/km. What is its mass...
(a) A steel power transmission line has a resistance of 0.0430 Ω/km. What is its mass per kilometer (in kg/km)? (Assume the density of steel is 7.8 ✕ 103 kg/m3.)   ________ kg/km (b) What is the mass per kilometer (in kg/km) of an iron line having the same resistance? (Assume the density of iron is 7.8 ✕ 103 kg/m3.) _______ kg/km
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT