Question

In: Electrical Engineering

A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊...

A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊ /km and a shunt admittance y = 5.105 x 10-6 < 90 ̊ S/km. The load at the receiving end is 135 MW at unity power factor and 215 kV. Determine the voltage, current, real and reactive power at the sending end and the percent voltage regulation of the line.

Solutions

Expert Solution


Related Solutions

A 3-phase 60 HZ , 200km transmission line has a series impedance of z= 0.10 +...
A 3-phase 60 HZ , 200km transmission line has a series impedance of z= 0.10 + j0.35 Ω/km and a capacitive reactance of 0.2 x 10 6 Ω-km. At the receiving end, the line delivers 250 MW @230/30θ kV and 0.95 lagging power factor. Determine a) The line impedance and shunt admittance b) The A, B, C , D parameters c) Sending end complex power and power factor d) Is the PF is leading or lagging e) Voltage regulation for...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10 + j0.40 Ohms/km. The load at the receiving end absorbs 15 MVA at 33 kV. Assuming a short line, calculate: (a) the ABCD parameters, (b) the sending-end voltage for a load power factor of 0.95 lagging, (c) the sending-end voltage for the a load power factor of 0.9 leading. (d) For which case is the sending-end voltage higher?
A three-phase 60-Hz transmission line is energized with 420 kV at the sending end. This line...
A three-phase 60-Hz transmission line is energized with 420 kV at the sending end. This line is lossless and 400 km long with ? = 0.001265 rad/km and ?? = 260 Ω. a) Suppose a three-phase short-circuit occurs at the receiving end. Determine the receiving end current and the sending end current. b) Determine the reactance and MVar of a shunt reactor to be installed at the load bus to limit the no-load receiving-end voltage to 440 kV. c) When...
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05...
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05 + j0.1  / km. A load with a power coefficient of 0.8 forward is fed from the end of the line. Line and end of line of energy transmission line According to the intention to keep the voltage between phases constant at 154 kV; a) Active and reactive power values ​​drawn from the beginning and end of the line, b) Calculate the lost...
345 kV, 50 Hz, 3-phase transmission line is 100 km long. The resistance is 0.048 Ω/km...
345 kV, 50 Hz, 3-phase transmission line is 100 km long. The resistance is 0.048 Ω/km and the inductance is 1,24 mH/km. The shunt capacitance is 0.0174 μF/km. The receiving end load is 216 MW with 0.8 power factor lagging at 325 kV. (a) Compute ABCD parameters using π equivalent circuit (b) Sending end voltage VS, (c) Sending end current IS, (d) Efficiency
A 500-kV, 60 Hz, three-phase completely transposed overhead line has three ASCR 1113-kcmil conductors per bundle,...
A 500-kV, 60 Hz, three-phase completely transposed overhead line has three ASCR 1113-kcmil conductors per bundle, with 0.5 m between conductors in the bundle. The horizontal phase spacing between bundle centers are 10, 10, and 20 m. With a length of 190 km, the line delivers 1800 MW at 475 kV and at 0.90 power factor leading to the receiving end at full load. Using the nominal π circuit, calculate the: (a) ABCD parameters, (b) sending-end voltage and current, (c)...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF lagging. The stator copper losses are 2 kW, the stator core losses are 1.8 kW and rotor copper losses are 700 W. The friction and windage losses are 600 W, the stray loss 100 W, and rotor core loss 100 W. Find the following quantities: a. The air gap power. b. The developed mechanical power. c. The output power. d. The efficiency of the...
A three-phase motor is delta connected to a 415 V, 60 Hz line. If the line...
A three-phase motor is delta connected to a 415 V, 60 Hz line. If the line current is 25 A and the motor power factor is 0.75, how much power is consumed by the motor (a) Determine the size of the bank of three capacitors to improve the power factor of the motor to 0.95. The capacitors are delta connected. (b) If two of the motors work together, what is the size of capacitors to correct the power factor to...
A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds...
A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds two balanced three-phase loads that are connected in parallel. The first load is Y-connected and has an impedance of 20+j40 Ω per phase. The second load is ∆-connected and has an impedance of 30-j60 Ω per phase. The line-to-line voltage at the load end of the line is 415V. Taking the phase voltage Va as reference, determine: a) The total current per phase from...
A three-phase line has an impedance of 1 + j3 Ω per phase. The line feeds...
A three-phase line has an impedance of 1 + j3 Ω per phase. The line feeds a balanced delta-connected load, which absorbs a total complex power of 12 + j5 kVA. The line voltage at the load end has a magnitude of 300 V. Calculate the magnitude of the line voltage at the source end.The magnitude of the line voltage at the source end is ____ V.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT