In: Statistics and Probability
Given the data in the spreadsheet below, what is the probability of completing the critical path of the project in 34 or more time units?
Activity | Preceded By | Optimistic Time | Most Likely Time | Pessimistic Time |
A | None | 12.89 | 15.25 | 18.21 |
B | None | 14.17 | 15.61 | 18.13 |
C | A and B | 12.33 | 14.2 | 17.98 |
D | A and B | 14.84 | 17.64 | 20.53 |
z = (34 - 33.445)/1.16 = 0.48
P (z > 0.48) = 0.3155
The probability of completing the critical path of the project in 34 or more time units is 0.3155.
The other calculations are:
Activity | Optimistic | Likely | Pessimistic | Mean | Std dev | Variance | ||
A | 12.89 | 15.25 | 18.21 | 15.35 | 0.886667 | 0.786178 | ||
B | 14.17 | 15.61 | 18.13 | 15.79 | 0.66 | 0.4356 | ||
C | 12.33 | 14.2 | 17.98 | 14.51833 | 0.941667 | 0.886736 | ||
D | 14.84 | 17.64 | 20.53 | 17.655 | 0.948333 | 0.899336 | ||
Precedences | ||||||||
Activity | Time | Pred 1 | Pred 2 | |||||
A | 15.35 | |||||||
B | 15.79 | |||||||
C | 14.51833 | A | B | |||||
D | 17.655 | A | B | |||||
Results | ||||||||
Activity | Early Start | Early Finish | Late Start | Late Finish | Slack | Variance | Critical Variance | |
A | 0 | 15.35 | 0.44 | 15.79 | 0.44 | 0.786178 | ||
B | 0 | 15.79 | 0 | 15.79 | 0 | 0.4356 | 0.4356 | |
C | 15.79 | 30.30833 | 18.92667 | 33.445 | 3.136667 | 0.886736 | ||
D | 15.79 | 33.445 | 15.79 | 33.445 | 0 | 0.899336 | 0.899336 | |
Project | 33.445 | Project | 1.334936 | |||||
Std.dev | 1.155394 |
Please give me a thumbs-up if this helps you out. Thank you!