Question

In: Statistics and Probability

Let X be normally distributed with mean μ = 3,800 and standard deviation σ = 2,000....

Let X be normally distributed with mean μ = 3,800 and standard deviation σ = 2,000. [You may find it useful to reference the z table.]

a. Find x such that P(X ≤ x) = 0.9382. (Round "z" value to 2 decimal places, and final answer to nearest whole number.)

b. Find x such that P(X > x) = 0.025. (Round "z" value to 2 decimal places, and final answer to nearest whole number.)

c. Find x such that P(3,800 ≤ Xx) = 0.1217. (Round "z" value to 2 decimal places, and final answer to nearest whole number.)

d. Find x such that P(Xx) = 0.4840. (Round "z" value to 2 decimal places, and final answer to nearest whole number.)

Solutions

Expert Solution

Solution :

a)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.9382      
          
Then, using table or technology,          
          
z =    1.54      
          
As x = u + z * s,          
          
where          
          
u = mean = 3800      
z = the critical z score =    1.54      
s = standard deviation = 2000      
          
Then          
          
x = critical value = 6880 [ANSWER]

*********************

b)

First, we get the z score from the given left tailed area. As          
          
Left tailed area = 1 - 0.025 =   0.975      
          
Then, using table or technology,          
          
z =    1.96      
          
As x = u + z * s,          
          
where          
          
u = mean = 3800      
z = the critical z score =    1.96      
s = standard deviation = 2000      
          
Then          
          
x = critical value = 7720 [ANSWER]

***************************

c)

First, we get the z score from the given left tailed area. As the lower endpoint, 3800, is the mean, then it has a left tailed area of 0.5. Thus, the left tailed area of x is          
          
Left tailed area = 0.50 + 0.1217 =   0.6217      
          
Then, using table or technology,          
          
z =    0.31      
          
As x = u + z * s,          
          
where          
          
u = mean = 3800      
z = the critical z score =    0.31      
s = standard deviation = 2000      
          
Then          
          
x = critical value = 4420 [ANSWER]

******************************

d)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.484      
          
Then, using table or technology,          
          
z =    -0.04      
          
As x = u + z * s,          
          
where          
          
u = mean = 3800      
z = the critical z score =    -0.04      
s = standard deviation = 2000      
          
Then          
          
x = critical value = 3720 [ANSWER]  

Please like if it helps me

Thank you so much


Related Solutions

Let X be normally distributed with mean μ = 26 and standard deviation σ = 13....
Let X be normally distributed with mean μ = 26 and standard deviation σ = 13. [You may find it useful to reference the z table.] a. Find P(X ≤ 0). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 13). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(13 ≤ X ≤ 26). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 146 and standard deviation σ = 34....
Let X be normally distributed with mean μ = 146 and standard deviation σ = 34. [You may find it useful to reference the z table.] a. Find P(X ≤ 100). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(95 ≤ X ≤ 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X ≤ x) = 0.330. (Round "z" value and...
Let X be normally distributed with mean μ = 18 and standard deviation σ = 8....
Let X be normally distributed with mean μ = 18 and standard deviation σ = 8. [You may find it useful to reference the z table.] a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 4). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(8 ≤ X ≤ 16). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12....
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12. [You may find it useful to reference the z table.] a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(5 ≤ X ≤ 20). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 18 and standard deviation σ = 14....
Let X be normally distributed with mean μ = 18 and standard deviation σ = 14. [You may find it useful to reference the z table.] a. Find P(X ≤ 4). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 11). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(4 ≤ X ≤ 18). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 3....
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 3. b. Find P(5.5 ≤ X ≤ 7.5). c. Find x such that P(X > x) = 0.0485.
et X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8....
et X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8. [You may find it useful to reference the z table.] a. Find P(X > 6.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(5.5 ≤ X ≤ 7.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X > x) = 0.0485. (Round "z" value and...
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7....
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7. compute the probability. P(57≤X≤66)
Let X be a random variable with mean μ and standard deviation σ. Consider a new...
Let X be a random variable with mean μ and standard deviation σ. Consider a new random variable Z, obtained by subtracting the constant μ from X and dividing the result by the constant σ: Z = (X –μ)/σ. The variable Z is called a standardised random variable. Use the laws of expected value and variance to show the following: a E(Z) = 0 b V (Z) = 1
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation...
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation σ = 7. Compute the probability. P(35<X<63)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT