In: Statistics and Probability
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 3.
b. Find P(5.5 ≤ X ≤ 7.5).
c. Find x such that P(X > x) = 0.0485.
Solution :
Given that ,
mean = = 4.1
standard deviation = = 3
P( 5.5 x 7.5)
= P[( 5.5 -4.1 /3 ) (x - ) / ( 7.5 -4.1/ )3 ]
= P( 0.47 z 1.13)
= P(z 1.13) - P(z 0.47)
Using z table,
= 0.8708 -0.6808
probability=0.1900
(c)
Using standard normal table,
P(Z > z) =0.0485
= 1 - P(Z < z) = 0.0485
= P(Z < z ) = 1 - 0.0485
= P(Z < z ) = 0.9515
= P(Z < 1.66) = 0.9515
z = 1.66 (using standard normal (Z) table )
Using z-score formula
x = z * +
x=1.66 *3+4.1
x= 9.08
x=9