In: Statistics and Probability
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12. [You may find it useful to reference the z table.]
a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
b. Find P(X > 5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
c. Find P(5 ≤ X ≤ 20). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
d. Find P(8 ≤ X ≤ 20). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
Solution :
a.
P(x 2)
= P[(x -
) /
(2 - 20) / 12]
= P(z
-1.5)
= 0.0668
P(x 2) = 0.0668
b.
P(x > 5) = 1 - P(x < 5)
= 1 - P[(x -
) /
< (5 - 20) / 12)
= 1 - P(z < -1.25)
= 1 - 0.1056
= 0.8944
P(x > 5) = 0.8944
c.
= P[( 5 - 20/ 12)
(x -
) /
(20 - 20 / 12) ]
= P(-1.25
z
0)
= P(z
0) - P(z
-1.25)
= 0.5 - 0.1056
= 0.3944
P(5
x
20) = 0.3944
d.
= P[(8 - 20 / 12)
(x -
) /
( 20 - 20 / 12) ]
= P( -1
z
0)
= P(z
0) - P(z
-1)
= 0.5 - 0.1587
= 0.3413
P(8
x
20) = 0.3413