In: Statistics and Probability
Let X be normally distributed with mean μ = 18 and standard deviation σ = 14. [You may find it useful to reference the z table.]
a. Find P(X ≤ 4). (Round
"z" value to 2 decimal places and final
answer to 4 decimal places.)
b. Find P(X > 11).
(Round "z" value to 2 decimal places and final
answer to 4 decimal places.)
c. Find P(4 ≤ X ≤ 18).
(Round "z" value to 2 decimal places and final
answer to 4 decimal places.)
d. Find P(18 ≤ X
≤ 25). (Round "z" value to 2 decimal
places and final answer to 4 decimal places.)
Solution :
a.
P(x 4)
= P[(x - ) / (4 - 18) / 14]
= P(z -1)
= 0.1587
P(x 4) = 0.1587
b.
P(x > 11) = 1 - P(x < 11)
= 1 - P[(x - ) / < (11 - 18) / 14)
= 1 - P(z < -0.5)
= 1 - 0.3085
= 0.6915
P(x > 11) = 0.6915
c.
= P[(4 - 18 / 14) (x - ) / (18 - 18 / 14) ]
= P(-1 z 0)
= P(z 0) - P(z -1)
= 0.5 - 0.1587
= 0.3413
P(4 x 18) = 0.3413
d.
= P[(18 - 18 / 14) (x - ) / (25 - 18 / 14) ]
= P(0 z 0.5)
= P(z 0.5) - P(z 0)
= 0.6915 - 0.5
= 0.1915
P(18 x 25) = 0.1915