Question

In: Statistics and Probability

et X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8....

et X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8. [You may find it useful to reference the z table.]


a. Find P(X > 6.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)

b. Find P(5.5 ≤ X ≤ 7.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)


c. Find x such that P(X > x) = 0.0485. (Round "z" value and final answer to 3 decimal places.)


d. Find x such that P(xX ≤ 3.3) = 0.1255. (Negative value should be indicated by a minus sign. Round "z" value and final answer to 3 decimal places.)

Solutions

Expert Solution

TOPIC:Normal distribution.


Related Solutions

Let X be normally distributed with mean μ = 26 and standard deviation σ = 13....
Let X be normally distributed with mean μ = 26 and standard deviation σ = 13. [You may find it useful to reference the z table.] a. Find P(X ≤ 0). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 13). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(13 ≤ X ≤ 26). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 146 and standard deviation σ = 34....
Let X be normally distributed with mean μ = 146 and standard deviation σ = 34. [You may find it useful to reference the z table.] a. Find P(X ≤ 100). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(95 ≤ X ≤ 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X ≤ x) = 0.330. (Round "z" value and...
Let X be normally distributed with mean μ = 18 and standard deviation σ = 8....
Let X be normally distributed with mean μ = 18 and standard deviation σ = 8. [You may find it useful to reference the z table.] a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 4). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(8 ≤ X ≤ 16). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12....
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12. [You may find it useful to reference the z table.] a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(5 ≤ X ≤ 20). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 3,800 and standard deviation σ = 2,000....
Let X be normally distributed with mean μ = 3,800 and standard deviation σ = 2,000. [You may find it useful to reference the z table.] a. Find x such that P(X ≤ x) = 0.9382. (Round "z" value to 2 decimal places, and final answer to nearest whole number.) b. Find x such that P(X > x) = 0.025. (Round "z" value to 2 decimal places, and final answer to nearest whole number.) c. Find x such that P(3,800...
Let X be normally distributed with mean μ = 18 and standard deviation σ = 14....
Let X be normally distributed with mean μ = 18 and standard deviation σ = 14. [You may find it useful to reference the z table.] a. Find P(X ≤ 4). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 11). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(4 ≤ X ≤ 18). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 3....
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 3. b. Find P(5.5 ≤ X ≤ 7.5). c. Find x such that P(X > x) = 0.0485.
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7....
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7. compute the probability. P(57≤X≤66)
A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18....
A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18. Find the probabilities of these X-values. (Round your answers to four decimal places.) (a)     1.00 < X < 1.50 (b)     X > 1.39 (c)     1.45 < X < 1.60
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation...
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation σ = 7. Compute the probability. P(35<X<63)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT