In: Statistics and Probability
Let X be normally distributed with mean μ = 26 and standard deviation σ = 13. [You may find it useful to reference the z table.]
a. Find P(X ≤ 0). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
b. Find P(X > 13). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
c. Find P(13 ≤ X ≤ 26). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
d. Find P(26 ≤ X ≤ 39). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
SOLUTION:
From given data,
Let X be normally distributed with mean μ = 26 and standard deviation σ = 13.
Where,
μ = 26
σ = 13.
a. Find P(X ≤ 0).
P(X ≤ 0) = P( (x-μ) / σ ≤ (0-26) / 13 )
= P( z ≤ -26 / 13 )
= P( z ≤ -2 )
= 0.0228
b. Find P(X > 13).
P(X > 13) = 1 - [P( (x-μ) / σ ≤ (13-26) / 13 )]
=1- [ P( z ≤ -13 / 13 )]
= 1-[P( z ≤ -1 )]
= 1- 0.1587
= 0.8413
c. Find P(13 ≤ X ≤ 26)
P(13 ≤ X ≤ 26) = P( (13-26) / 13 ≤ (x-μ) / σ ≤ (26-26) / 13 )
= P(-13 / 13 ≤ z ≤ 0 / 13 )
= P(-1 ≤ z ≤ 0 )
= p(z ≤ 0 ) - p(z ≤ -1 )
= 0.5-0.1587
= 0.3413
d. Find P(26 ≤ X ≤ 39).
P(26 ≤ X ≤ 39) = P( (26-26) / 13 ≤ (x-μ) / σ ≤ (39-26) / 13 )
= P(0 / 13 ≤ z ≤ 13 / 13 )
= P(0 ≤ z ≤1 )
= p(z ≤ 1 ) - p(z ≤ 0 )
= 0.8413-0.5
= 0.3413