Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by \( A = \begin{pmatrix}6&2&3\\ -3&-1&-1\\ -5&-2&-2\end{pmatrix} \)L be a map from\( \hspace{2mm} \mathbb{R}^3\hspace{2mm} \)into\( \hspace{2mm}\mathbb{R}^3\hspace{2mm} \)by\( \hspace{2mm} L(v) = Av. \)

(a) Show that L is a linear operator on \( \hspace{2mm}\mathbb{R}^3. \)

(b) Find the characteristic polynomial of L with respect to standard basis for \( \mathbb{R}^3 \) Derive the determinant of L then deduce that L is invertible.

(c) Find the eigenvalues and eigenspaces of L.

(d) Show that L is not diagonalizable, but it is triangularizable, then triangularize L.

(e) Write \( L^n \) in term of n, where \( L^n = L(L(...(L)..)) \), the n compositions of L.

Solutions

Expert Solution

Solution

(a) Show that L is a linear operator on \( \hspace{2mm}\mathbb{R^3}. \)

Let \( u,v\in \mathbb{R}^3 \hspace{2mm},\alpha \in \mathbb{R}\implies L(u+\alpha v)=L(u)+\alpha L(v). \)

Threfore  L is linear.

(b) Find the characteristic polynomial of L with respect to standard basis for \( \mathbb{R}^3 \). Derive the determinant of L then deduce that L is invertible.

we have \( A = \begin{pmatrix}6&2&3\\ -3&-1&-1\\ -5&-2&-2\end{pmatrix} \)

\( \implies P(\lambda)=|A-\lambda I|=\begin{vmatrix} 6-\lambda& 2 & 3 \\ -3 & -1-\lambda & -1 \\ -5 & -2 & -2-\lambda \end{vmatrix} \)

                    \( =-\lambda^3+3\lambda^2-3\lambda+1=-\bigg(\lambda-1\bigg)^3 \)

Therefore . \( P(\lambda)=-\bigg(\lambda-1\bigg)^3 \) and \( det\bigg([L]_B\bigg)=det(A)=P(0)=1 \)

Then  \( [L]_B \)  is invertible.

(c) Find the eigenvalues and eigenspaces of L.

if \( \lambda \in SP(A) \implies \lambda =1 \) so , \( SP(A)=\left\{1\right\} \)

\( \bullet \hspace{2mm} Find\hspace{2mm} eigenspace \)

\( \iff [L]_B-\lambda I=A-\lambda I=A-I=\begin{pmatrix}5&2&3\\ -3&-2&-1\\ -5&-2&-3\end{pmatrix} \sim \begin{pmatrix}5&2&3\\ 2&0&2\\ 0&0&0\end{pmatrix} \)

Let \( x_3=t \hspace{2mm},x_1=-t\implies 2x_2=-5x_1-3x_3=2t\implies x_2=t \)

Therefore . \( E_\lambda=span\left\{\begin{pmatrix}-1\\ 1\\ 1\end{pmatrix}\right\} \)

(d) Show that L is not diagonalizable, but it is triangularizable, then triangularize L.

since. \( Am(\lambda)\neq gm(\lambda) \) so L is not diagonalizable.  But L is triangularizable .

\( \bullet \hspace{2mm}Triangularizable \)

we have \( A-\lambda I=\begin{pmatrix}5&2&3\\ -3&-2&-1\\ -5&-2&-3\end{pmatrix} \hspace{2mm},\lambda=1 \)

\( \implies \bigg(A-\lambda I\bigg)^2=\begin{pmatrix}4&0&4\\ -4&0&-4\\ -4&0&-4\end{pmatrix} \)

Then \( E_{\lambda}^2=span\left\{\begin{pmatrix}0\\ 1\\ 0\end{pmatrix},\begin{pmatrix}1\\ 0\\ -1\end{pmatrix}\right\} \hspace{2mm}and \hspace{2mm}\bigg(A-\lambda I\bigg)^3=0 \)

\( \implies G_\lambda =E_{\lambda}^3=span\left\{\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\begin{pmatrix}0\\ 1\\ 0\end{pmatrix},\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}\right\} \)

\( V_3\in E_{\lambda}^3-E_{\lambda}^2\implies V_3=\begin{pmatrix}1\\ 0\\ 0\end{pmatrix} \)

\( \implies V_2=\bigg(A-I\bigg)V_3=\begin{pmatrix}5&2&3\\ -3&-2&-1\\ -5&-2&-3\end{pmatrix}\begin{pmatrix}1\\ 0\\ 0\end{pmatrix}=\begin{pmatrix}5\\ -3\\ -5\end{pmatrix} \)

\( \implies V_1=\bigg(A-I\bigg)V_2=\begin{pmatrix}5&2&3\\ -3&-2&-1\\ -5&-2&-3\end{pmatrix}\begin{pmatrix}5\\ -3\\ -5\end{pmatrix}=\begin{pmatrix}4\\ -4\\ -4\end{pmatrix} \)

Therefore, \( A=PJP^{-1}=[L]_B \hspace{2mm},J=\begin{pmatrix}1&1&0\\ 0&1&1\\ 0&0&1\end{pmatrix},P=\begin{pmatrix}4&5&1\\ -4&-3&0\\ -4&-5&0\end{pmatrix} \)

(e) Write \( L^n \) in term of n, where \( L^n = L(L(...(L)..)) \), the n compositions of L.

we have \( L^n=A^nr=PI^nP^{-1}V \)

where  \( L^n=\bigg(I+M\bigg)^n \)Then \( M=\begin{pmatrix}0&1&0\\ 0&0&1\\ 0&0&0\end{pmatrix}\hspace{2mm} \)and\( \hspace{2mm} M^3=0 \)

so,  \( J^n=I+nM+\frac{n(n-1)}{2}M^2=\begin{pmatrix}1&n&\frac{n\left(n-1\right)}{2}\\ 0&1&n\\ 0&0&1\end{pmatrix} \)


Answer

Therefore. 

a). L is Linear

b). \( P(\lambda)=-\bigg(\lambda-1\bigg)^3 \) and \( det\bigg([L]_B\bigg)=det(A)=P(0)=1 \)

c). \( E_\lambda=span\left\{\begin{pmatrix}-1\\ 1\\ 1\end{pmatrix}\right\} \)

d). \( A=PJP^{-1}=[L]_B \hspace{2mm},J=\begin{pmatrix}1&1&0\\ 0&1&1\\ 0&0&1\end{pmatrix},P=\begin{pmatrix}4&5&1\\ -4&-3&0\\ -4&-5&0\end{pmatrix} \)

e). \( L^n=A^n \times V=\bigg(PJ^nP^{-1}\bigg)v\hspace{2mm}, J^n=\begin{pmatrix}1&n&\frac{n\left(n-1\right)}{2}\\ 0&1&n\\ 0&0&1\end{pmatrix} \)

Related Solutions

Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and \( \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} \)(no need distinct) be eigenvalues of A. Show that  a). \( \sum _{i=1}^n\lambda _i=tr\left(A\right) \)  b). \( \:\prod _{i=1}^n\lambda _i=\left|A\right|\: \)  
Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and\( \hspace{2mm} m_A(\lambda)\hspace{2mm} \) be its minimal polynomial. Let f be a polynomial satisfies\( \hspace{2mm}f(A) = 0. \hspace{2mm} \)Show that\( \hspace{2mm} f(\lambda) \hspace{2mm} \)is divisible by\( \hspace{2mm} m_A(\lambda). \)
Jordan Canonical Form
Let A be a square matrix defined by \( A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} \)Find the minimal polynomial of A. Then express \( A^4 \) and \( A^{-1} \) in terms of A and I.
Jordan Canonical Form
Determine the value of a so that \( \lambda = 2 \) is an eigenvalue of  \( A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} \) Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let \( A\in M_6(\mathbb{R}) \) be an invertible matrix satisfies \( A^3-4A^2 + 3A = 0 \) and \( tr(A) = 8. \) Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over \( \mathbb{R} \) (c) Show that A is diagonalizable over\( \mathbb{C} \). Find the eigenspaces. Diagonalize A. (d) Express \( A^n \) in the form of \( a_nA^2+b_ nA+c_nI_n \) where \( (a_n), (b_n) \) and \( (c_n) \) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences \( (a)_n, (b)_n ,(c)_n \) satisfying. \( \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases} \)  
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write \( A^n \) in terms of \( I, A,A^2 \) and n.  
Jordan Canonical Form
Let A be a square matrix defined by\( A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write \( A^n \) in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT