Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix}

(a) Find the characteristic polynomial of A.

(b) Show that A is diagonalizable then diagonalize it.

(c) Write $A^n$ \hspace{2mm} in term of n.

 

 

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

we have A=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix}

    P(λ)=AλI=(1)3(λ3S1λ2+S2λS3) \implies P(\lambda)=|A-\lambda I|=\bigg(-1\bigg)^3\bigg(\lambda^3-S_1\lambda^2+S_2\lambda-S_3\bigg)

S1=22+2=2 \bullet \hspace{2mm}S_1=2-2+2=2

S2=2132+1112+1212 \bullet \hspace{2mm}S_2=\begin{vmatrix}-2&1\\ -3&2\end{vmatrix}+\begin{vmatrix}1&1\\ 1&2\end{vmatrix}+\begin{vmatrix}1&-2\\ 1&-2\end{vmatrix}

         =(4+3)+(2+1)+(3+2)=1 =\bigg(-4+3\bigg)+\bigg(2+1\bigg)+\bigg(-3+2\bigg)=1

S3=231121132=2(4+3)+3(21)+1(3+2)=0 \bullet \hspace{2mm}S_3=\begin{vmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{vmatrix}=2\bigg(-4+3\bigg)+3\bigg(2-1\bigg)+1\bigg(-3+2\bigg)=0

Therefore, P(λ)=λ(λ1)2 P(\lambda)=-\lambda\bigg(\lambda-1\bigg)^2

Show that A is diagonalizable then diagonalize it. 

we have P(λ)=0    λ(λ1)2=0 P(\lambda)=0\implies -\lambda\bigg(\lambda-1\bigg)^2=0     λ1=0,λ2=1 \iff \lambda_1=0,\lambda_2=1

so, spact(A)={0,1} spact(A)=\left\{0,1\right\}

where, am(0)=1,am(1)=2 am(0)=1,am(1)=2   Then  E2={xR3(AI)x=0} E_2=\left\{x\in \mathbb{R}^3|\bigg(A-I\bigg)x=0\right\}

Let x=(x1x2x3) x=\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}\hspace{2mm} Then A=(131131131)(x1x2x3)=0 A=\begin{pmatrix}1&-3&1\\ 1&-3&1\\ 1&-3&1\end{pmatrix}\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}=0

    x13x2+x0    x3=x1+3x2 \iff x_1-3x_2+x_0\implies x_3=-x_1+3x_2

    x=(x1x2x1+3x2)=x1(101)+x2(013) \implies x=\begin{pmatrix}x_1\\ x_2\\ -x_1+3x_2\end{pmatrix}\hspace{2mm} =x_1\begin{pmatrix}1\\ 0\\ -1\end{pmatrix}+x_2\begin{pmatrix}0\\ 1\\ 3\end{pmatrix}

    E2={(101),(013)} \iff E_2=\left\{\begin{pmatrix}1\\ \:0\\ \:-1\end{pmatrix},\begin{pmatrix}0\\ \:1\\ \:3\end{pmatrix}\right\}

Then gm(1)=dim(E2)=2    E1={xRAx=0} gm(1)=dim(E_2)=2\implies E_1=\left\{x\in \mathbb{R}|Ax=0\right\}

    A=(231121132)(110011032)(110011000) \implies A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \sim \begin{pmatrix}1&-1&0\\ 0&1&-1\\ 0&-3&2\end{pmatrix}\sim \begin{pmatrix}1&-1&0\\ 0&1&-1\\ 0&0&0\end{pmatrix} \hspace{2mm}

Let  x3=t    x2=x1=t x_3=t\implies x_2=x_1=t

    x=(ttt)=t(111)    gm(0)=dim(E1)=1 \implies x=\begin{pmatrix}t\\ t\\ t\end{pmatrix}=t\begin{pmatrix}1\\ 1\\ 1\end{pmatrix}\hspace{2mm}\iff gm(0)=dim(E_1)=1

so, am(1)=gm(1)=2,am(0)=gm(0)=1 am(1)=gm(1)=2\hspace{2mm},am(0)=gm(0)=1

Therefore,A is diagonallizable.

(c) WriteAn A^n \hspace{2mm} in term of n.

we have An=PDP1 A^n=PDP^{-1} since P=(101011131),D=(100010000) P=\begin{pmatrix}1&0&1\\ 0&1&1\\ -1&3&1\end{pmatrix} \hspace{2mm},D=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&0\end{pmatrix}

    An=(101011131)(100010000)n(101011131)1 \implies A^n=\begin{pmatrix}1&0&1\\ 0&1&1\\ -1&3&1\end{pmatrix}\begin{pmatrix}1&0&0\\ \:0&1&0\\ \:0&0&0\end{pmatrix}^n\begin{pmatrix}1&0&1\\ \:0&1&1\\ \:-1&3&1\end{pmatrix}^{-1}

Therefore. An=(123212010123212) A^n=\begin{pmatrix}\frac{1}{2}&\frac{3}{2}&-\frac{1}{2}\\ 0&1&0\\ -\frac{1}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix}

 


Answer

Therefore.

a). P(λ)=λ(λ1)2 P(\lambda)=-\lambda\bigg(\lambda-1\bigg)^2

b). A is diagonallizable. D=(100010000) D=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&0\end{pmatrix}

c). An=(123212010123212) A^n=\begin{pmatrix}\frac{1}{2}&\frac{3}{2}&-\frac{1}{2}\\ 0&1&0\\ -\frac{1}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix}

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.
Jordan Canonical Form
Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of  A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R} (c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A. (d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying. {an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}  
Jordan Canonical Form
Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.  
Jordan Canonical Form
Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT