Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.

Solutions

Expert Solution

Solution

we have A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}   The characteristics polynomial is :

P(λ)=(λ3S1λ2+S2λs3) P(\lambda)=-\bigg(\lambda^3-S_1\lambda^2+S_2\lambda-s_3\bigg)

S1=tr(A)=4+0+3=7 \bullet S_1=tr(A)=4+0+3=7

S2=4220+0123+4123=4+2+10=16 \bullet S_2=\begin{vmatrix}4&-2\\ 2&0\end{vmatrix}+\begin{vmatrix}0&1\\ -2&3\end{vmatrix}+\begin{vmatrix}4&1\\ 2&3\end{vmatrix}=4+2+10=16

S3=421201223=12 \bullet S_3=\begin{vmatrix}4&-2&1\\ \:2&0&1\\ \:2&-2&3\end{vmatrix}=12

    P(λ)=λ3+7λ216λ+12=(λ2)2(λ3) \implies P(\lambda)=-\lambda^3+7\lambda^2-16\lambda+12=-\bigg(\lambda-2\bigg)^2\bigg(\lambda-3\bigg)

since.  P(λ)=0    (λ2)2(λ3)=0    λ1=2,λ2=3 P(\lambda)=0\implies -\bigg(\lambda-2\bigg)^2\bigg(\lambda-3\bigg)=0 \iff \lambda_1=2,\lambda_2=3

For λ1=2 \lambda_1=2 then (A2I)=0 \bigg(A-2I\bigg)=0

    (221221221)(221000000) \implies \begin{pmatrix}2&-2&1\\ 2&-2&1\\ 2&-2&1\end{pmatrix}\sim \begin{pmatrix}2&-2&1\\ 0&0&0\\ 0&0&0\end{pmatrix}\hspace{2mm}

Let x1=t,x2=S,t,SR x_1=t,x_2=S\hspace{2mm},t,S\in \mathbb{R}

    2x12x2+x3=0    x3=2t+2S \implies 2x_1-2x_2+x_3=0\implies x_3=-2t+2S

so, x(tS2t+2S)=t(102)+S(012) \hspace{2mm}x\begin{pmatrix}t\\ S\\ -2t+2S\end{pmatrix}=t\begin{pmatrix}1\\ 0\\ -2\end{pmatrix}+S\begin{pmatrix}0\\ 1\\ 2\end{pmatrix}

    Eλ1=span{(102),(012)} \implies E_{\lambda_1}=span\left\{\begin{pmatrix}1\\ \:0\\ \:-2\end{pmatrix},\begin{pmatrix}0\\ \:1\\ \:2\end{pmatrix}\right\}

    gm(λ1)=am(λ1)=2 \implies gm(\lambda_1)=am(\lambda_1)=2   and  Index(λ1)=1 Index(\lambda_1)=1

The minimal polynomial is :

m(λ)=(λ2)(λ3) m(\lambda)=\bigg(\lambda-2\bigg)\bigg(\lambda-3\bigg)

\bullet Express  A4 A^4 and A1 A^{-1} interm of of A and I.

we have m(λ)=(λ2)(λ3)=λ25λ+6 m(\lambda)=\bigg(\lambda-2\bigg)\bigg(\lambda-3\bigg)=\lambda^2-5\lambda+6

Let x4=(x25x+6)4x+ax+b x^4=\bigg(x^2-5x+6\bigg)4x+ax+b

    A4=(A25A+6I)4A+aA+bI \implies A^4=\bigg(A^2-5A+6I\bigg)4A+aA+bI

    A4=aA+bI \iff A^4=aA+bI

    {x=3    34=3a+bx=2    24=2a+b    a=65,b=114 \iff \begin{cases} x=3\implies 3^4=3a+b & \quad \\ x=2\implies 2^4=2a+b & \quad \end{cases}\hspace{2mm}\implies a=65,b=-114

Thus, A4=65A114I A^4=65A-114I

\bullet Find A1 A^{-1}

    A25A+6I=0    A2+5A=6I \implies A^2-5A+6I=0\iff -A^2+5A=6I

    16A(A5I)=I \iff -\frac{1}{6}A\bigg(A-5I\bigg)=I

Therefore. A1=16A(A5I) A^{-1}=-\frac{1}{6}A\bigg(A-5I\bigg)


Answer

Therefore.

m(λ)=(λ2)(λ3) m(\lambda)=\bigg(\lambda-2\bigg)\bigg(\lambda-3\bigg)

A1=16A(A5I) A^{-1}=-\frac{1}{6}A\bigg(A-5I\bigg)

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of  A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R} (c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A. (d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying. {an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}  
Jordan Canonical Form
Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.  
Jordan Canonical Form
Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT