Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix}

(a) Find the characteristic polynomial of A.

(b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R}

(c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A.

(d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified.

A=PDP1,D=(00001i0001+i),P=(112i1+2i01+3i13i111) A=PDP^{-1},D=\begin{pmatrix}0&0&0\\ 0&-1-i&0\\ 0&0&-1+i\end{pmatrix},P=\begin{pmatrix}-1&-1-2i&-1+2i\\ 0&1+3i&1-3i\\ 1&1&1\end{pmatrix}

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

    P(λ)=AλI=3λ1353λ5111 \implies P(\lambda)=|A-\lambda I|=\begin{vmatrix} -3-\lambda & -1 & -3\\ 5 & 3-\lambda & 5\\ 1- & -1 & -1 \end{vmatrix}

=(3λ)2λ511λ+5511λ352λ11 =(-3-\lambda)\begin{vmatrix} 2-\lambda & 5 \\ -1 & -1-\lambda \end{vmatrix}+\begin{vmatrix} 5 & 5 \\ -1 & -1-\lambda \end{vmatrix}-3\begin{vmatrix} 5 & 2-\lambda \\ -1 & -1 \end{vmatrix}

Therefore. P(λ)=λ(λ2+2λ+2) P(\lambda)=-\lambda\bigg(\lambda^2+2\lambda+2\bigg)

(b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R}

since P(λ)isnotsplittedoverR P(\lambda)\hspace{2mm}is\hspace{2mm} not\hspace{2mm} splitted\hspace{2mm} over \hspace{2mm}\mathbb{R}

Therefore. A is not diagonalizable over R \mathbb{R}

c). Show that A is diagonalizable over C \mathbb{C} . Find the eigenspaces. Diagonalize A.

we have  P(λ)=λ(λ2+2λ+2) P(\lambda)=-\lambda\bigg(\lambda^2+2\lambda+2\bigg)

    P(λ)=0    λ(λ2+2λ+2)=0 \implies P(\lambda)=0\implies -\lambda\bigg(\lambda^2+2\lambda+2\bigg)=0

    λ1=0,λ2=1+i,λ3=1i \iff \lambda_1=0,\lambda_2=-1+i,\lambda_3=-1-i

Since over C \mathbb{C} : P(λ)issplitted    P(λ)=λ(λ+1+i)(λ+1i) P(\lambda)\hspace{2mm} is\hspace{2mm} splitted \implies P(\lambda)=-\lambda\bigg(\lambda+1+i\bigg)\bigg(\lambda+1-i\bigg)

Then am(λ)=gm(λ),λ am(\lambda)=gm(\lambda),\forall \lambda   Thus. A is diagonalizable.

\bullet\hspace{2mm} Find diagonalize A

since. A=PDP1,D=(00001i0001+i) A=PDP^{-1},D=\begin{pmatrix}0&0&0\\ 0&-1-i&0\\ 0&0&-1+i\end{pmatrix}   

Forλ1=0    Eλ1={xR:Ax=0} For\hspace{2mm} \lambda_1=0\implies E_{\lambda_1}=\bigg\{x\in \mathbb{R} : Ax=0\bigg\}

    A=(313525111)(202303111)(111101000) \implies A=\begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix}\sim \begin{pmatrix}2&0&2\\ 3&0&3\\ 1&1&1\end{pmatrix}\sim \begin{pmatrix}1&1&1\\ 1&0&1\\ 0&0&0\end{pmatrix}

Let x3=t    x1=t,x2=0 x_3=t\implies x_1=-t,x_2=0

Thus.  Eλ1=span{(101)} E_{\lambda_1}=span\left\{\begin{pmatrix}-1\\ 0\\ 1\end{pmatrix}\right\}

Forλ2=1i For\hspace{2mm} \lambda_2=-1-i

    A+(1+i)I=(2+i1353+i511i)(101+2i0113i000) \implies A+(1+i)I=\begin{pmatrix}-2+i&-1&-3\\ \:5&3+i&5\\ -1\:&-1&i\end{pmatrix}\sim \begin{pmatrix}1&0&1+2i\\ 0&1&-1-3i\\ 0&0&0\end{pmatrix}

Thus. Eλ2=span{(12i1+3i1)} E_{\lambda_2}=span\left\{\begin{pmatrix}-1-2i\\ 1+3i\\ 1\end{pmatrix}\right\}

Forλ3=1+i For\hspace{2mm} \lambda_3=-1+i

    A+(1i)I=(2i1353i511i)(1012i011+3i000) \implies A+(1-i)I=\begin{pmatrix}-2-i&-1&-3\\ 5&3-i&5\\ -1&-1&-i\end{pmatrix}\sim \begin{pmatrix}1&0&1-2i\\ 0&1&-1+3i\\ 0&0&0\end{pmatrix}

Thus. Eλ3=span{(1+2i13i1)} E_{\lambda_3}=span\left\{\begin{pmatrix}-1+2i\\ 1-3i\:\\1 \:\end{pmatrix}\right\}

Therefore.  

A=PDP1,D=(00001i0001+i),P=(112i1+2i01+3i13i111) A=PDP^{-1},D=\begin{pmatrix}0&0&0\\ 0&-1-i&0\\ 0&0&-1+i\end{pmatrix},P=\begin{pmatrix}-1&-1-2i&-1+2i\\ 0&1+3i&1-3i\\ 1&1&1\end{pmatrix}

(d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified.

we have xn=p(x)q(x)+anx2+bnx+cn x^n=p(x)q(x)+a_nx^2+b_nx+c_n

since. P(0)=0,P(1i)=0andP(1+i)=0 P(0)=0,P(-1-i)=0\hspace{2mm}and\hspace{2mm}P(-1+i)=0

    {cn=0(1i)n=an(1i)2+bn(1i)(1)(1+i)n=an(1+i)2+bn(1+i)(2) \implies \begin{cases} c_n=0 & \quad \\ (-1-i)^n=a_n(-1-i)^2+b_n(-1-i) \hspace{3mm}(1)& \quad \\ (-1+i)^n=a_n(-1+i)^2+b_n(-1+i) \hspace{3mm}(2) & \quad \end{cases}

(1)(2):(1i)n(1+i)n=bn(1i+1i)=bn(2i) (1)-(2) : (-1-i)^n-(-1+i)^n=b_n(-1-i+1-i)=b_n(-2i)

    bn=12i[(1i)n(1+i)n] \implies b_n=\frac{1}{2}i\bigg[(-1-i)^n-(-1+i)^n\bigg]

From (1) : an=2i(1i)n[(1i)n(1+i)n] a_n=-2i(-1-i)^n-\bigg[(-1-i)^n-(-1+i)^n\bigg]


Answer

Therefore.

a). P(λ)=λ(λ2+2λ+2) P(\lambda)=-\lambda\bigg(\lambda^2+2\lambda+2\bigg)

b). A is not diagonalizable over R \mathbb{R}

c). A=PDP1,D=(00001i0001+i),P=(112i1+2i01+3i13i111) A=PDP^{-1},D=\begin{pmatrix}0&0&0\\ 0&-1-i&0\\ 0&0&-1+i\end{pmatrix},P=\begin{pmatrix}-1&-1-2i&-1+2i\\ 0&1+3i&1-3i\\ 1&1&1\end{pmatrix}

d). An=anA2+bnA A^n=a_nA^2+b_nA

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.
Jordan Canonical Form
Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of  A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying. {an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}  
Jordan Canonical Form
Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.  
Jordan Canonical Form
Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT