Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix}

(a) Find the characteristic polynomial of A.

(b) Find the eigenvalues and eigenspaces of A.

(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.

(d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying.

{an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}

 

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

we have A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix}

    P(λ)=λ3+6λ212λ8=(λ2)3 \implies P(\lambda)=\lambda^3+6\lambda^2-12\lambda-8=-\bigg(\lambda-2\bigg)^3

Thus, P(λ)=(λ2)3 P(\lambda)=-\bigg(\lambda-2\bigg)^3

(b) Find the eigenvalues and eigenspaces of A.

λsp(A)    P(λ)=0    λ=2witham(2)=3 \lambda \in sp(A) \iff P(\lambda)=0\implies \lambda =2 \hspace{2mm}with \hspace{2mm} am(2)=3

A2I=(415203424)(203011000) A-2I=\begin{pmatrix}-4&-1&-5\\ 2&0&3\\ 4&2&4\end{pmatrix}\sim \begin{pmatrix}2&0&3\\ 0&1&-1\\ 0&0&0\end{pmatrix}

Let x3=t    x2=t    x1=32t x_3=t\implies x_2=t\implies x_1=-\frac{3}{2}t

Thus, E2=span{(3211)} E_2=span\left\{\begin{pmatrix}-\frac{3}{2}\\ 1\\ 1\end{pmatrix}\right\}

(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.

since P(λ) P(\lambda) is splitted and am(λ)gm(λ) am(\lambda) \neq gm(\lambda) so A is not diagonalizable but it's trianglarizable 

Triangularizable \bullet \hspace{2mm}Triangularizable

    A=PJP1,J=(210021002) \implies A=PJP^{-1}\hspace{2mm}, J=\begin{pmatrix}2&1&0\\ 0&2&1\\ 0&0&2\end{pmatrix}

Then (A2I)2=(663442442),(A2I)3=(000000000) \bigg(A-2I\bigg)^2=\begin{pmatrix}-6&-6&-3\\ 4&4&2\\ 4&4&2\end{pmatrix}\hspace{2mm},\bigg(A-2I\bigg)^3=\begin{pmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{pmatrix}

Let V3GλEλ2,Gλ={(100),(010),(001)} V_3\in G_{\lambda}-E_{\lambda}^2 \hspace{2mm},G_{\lambda}=\left\{\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\begin{pmatrix}0\\ 1\\ 0\end{pmatrix},\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}\right\}

    V3=(100),V2=(A2I)V3=(424),v1=(A2I)V2=(644) \implies V_3=\begin{pmatrix}1\\ 0\\ 0\end{pmatrix} \hspace{2mm},V_2=\bigg(A-2I\bigg)V_3=\begin{pmatrix}-4\\ 2\\ 4\end{pmatrix}\hspace{3mm},v_1=\bigg(A-2I\bigg)V_2=\begin{pmatrix}-6\\ 4\\ 4\end{pmatrix}

Thus, A=PJP1whereJ=(210021000),P=(641420440) A=PJP^{-1}\hspace{2mm}where\hspace{2mm}J=\begin{pmatrix}2&1&0\\ 0&2&1\\ 0&0&0\end{pmatrix},P=\begin{pmatrix}-6&-4&1\\ 4&2&0\\ 4&4&0\end{pmatrix}

(d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying.

{an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}

Let Xn+1=(an+1bn+1cn+1)    Xn+1=AXn=An+1X0orXn=AnX0 X_{n+1}=\begin{pmatrix}a_{n+1}\\ b_{n+1}\\ c_{n+1}\end{pmatrix} \implies X_{n+1}=AX_n=A^{n+1}X_0 \hspace{2mm}or\hspace{2mm} X_n=A^nX_0

where  An=PJnP1withJ=2I+M,M=(010001000)andM3=0 A^n=PJ^nP^{-1}\hspace{2mm}with\hspace{2mm} J=2I+M \hspace{2mm},M=\begin{pmatrix}0&1&0\\ 0&0&1\\ 0&0&0\end{pmatrix} \hspace{2mm}and\hspace{2mm}M^3=0

Then Jn=(2I)n+n(2I)n1M+n(n1)2M2×2n2 J^n=\bigg(2I\bigg)^n+n\bigg(2I\bigg)^{n-1}M+\frac{n(n-1)}{2}M^2\times 2^{n-2}

Thus, Xn=P(2nI+2nnM+n(n1)2×2n2M2)P1X0 X_n=P\bigg(2^nI+2^nnM+\frac{n(n-1)}{2}\times 2^{n-2}M^2\bigg)P^{-1}X_0

 


Answer

Therefore. 

a). P(λ)=(λ2)3 P(\lambda)=-\bigg(\lambda-2\bigg)^3

b). E2=span{(3211)} E_2=span\left\{\begin{pmatrix}-\frac{3}{2}\\ 1\\ 1\end{pmatrix}\right\}

c).A=PJP1whereJ=(210021000),P=(641420440) A=PJP^{-1}\hspace{2mm}where\hspace{2mm}J=\begin{pmatrix}2&1&0\\ 0&2&1\\ 0&0&0\end{pmatrix},P=\begin{pmatrix}-6&-4&1\\ 4&2&0\\ 4&4&0\end{pmatrix}

d). Xn=P(2nI+2nnM+n(n1)2×2n2M2)P1X0 X_n=P\bigg(2^nI+2^nnM+\frac{n(n-1)}{2}\times 2^{n-2}M^2\bigg)P^{-1}X_0

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.
Jordan Canonical Form
Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of  A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R} (c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A. (d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.  
Jordan Canonical Form
Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT