Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by \( A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} \)

(a) Find the characteristic polynomial of A.

(b) Find the eigenvalues and eigenspaces of A.

(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.

(d) Find the three real sequences \( (a)_n, (b)_n ,(c)_n \) satisfying.

\( \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases} \)

 

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

we have \( A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} \)

\( \implies P(\lambda)=\lambda^3+6\lambda^2-12\lambda-8=-\bigg(\lambda-2\bigg)^3 \)

Thus, \( P(\lambda)=-\bigg(\lambda-2\bigg)^3 \)

(b) Find the eigenvalues and eigenspaces of A.

\( \lambda \in sp(A) \iff P(\lambda)=0\implies \lambda =2 \hspace{2mm}with \hspace{2mm} am(2)=3 \)

\( A-2I=\begin{pmatrix}-4&-1&-5\\ 2&0&3\\ 4&2&4\end{pmatrix}\sim \begin{pmatrix}2&0&3\\ 0&1&-1\\ 0&0&0\end{pmatrix} \)

Let \( x_3=t\implies x_2=t\implies x_1=-\frac{3}{2}t \)

Thus, \( E_2=span\left\{\begin{pmatrix}-\frac{3}{2}\\ 1\\ 1\end{pmatrix}\right\} \)

(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.

since \( P(\lambda) \) is splitted and \( am(\lambda) \neq gm(\lambda) \) so A is not diagonalizable but it's trianglarizable 

\( \bullet \hspace{2mm}Triangularizable \)

\( \implies A=PJP^{-1}\hspace{2mm}, J=\begin{pmatrix}2&1&0\\ 0&2&1\\ 0&0&2\end{pmatrix} \)

Then \( \bigg(A-2I\bigg)^2=\begin{pmatrix}-6&-6&-3\\ 4&4&2\\ 4&4&2\end{pmatrix}\hspace{2mm},\bigg(A-2I\bigg)^3=\begin{pmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{pmatrix} \)

Let \( V_3\in G_{\lambda}-E_{\lambda}^2 \hspace{2mm},G_{\lambda}=\left\{\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\begin{pmatrix}0\\ 1\\ 0\end{pmatrix},\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}\right\} \)

\( \implies V_3=\begin{pmatrix}1\\ 0\\ 0\end{pmatrix} \hspace{2mm},V_2=\bigg(A-2I\bigg)V_3=\begin{pmatrix}-4\\ 2\\ 4\end{pmatrix}\hspace{3mm},v_1=\bigg(A-2I\bigg)V_2=\begin{pmatrix}-6\\ 4\\ 4\end{pmatrix} \)

Thus, \( A=PJP^{-1}\hspace{2mm}where\hspace{2mm}J=\begin{pmatrix}2&1&0\\ 0&2&1\\ 0&0&0\end{pmatrix},P=\begin{pmatrix}-6&-4&1\\ 4&2&0\\ 4&4&0\end{pmatrix} \)

(d) Find the three real sequences \( (a)_n, (b)_n ,(c)_n \) satisfying.

\( \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases} \)

Let \( X_{n+1}=\begin{pmatrix}a_{n+1}\\ b_{n+1}\\ c_{n+1}\end{pmatrix} \implies X_{n+1}=AX_n=A^{n+1}X_0 \hspace{2mm}or\hspace{2mm} X_n=A^nX_0 \)

where  \( A^n=PJ^nP^{-1}\hspace{2mm}with\hspace{2mm} J=2I+M \hspace{2mm},M=\begin{pmatrix}0&1&0\\ 0&0&1\\ 0&0&0\end{pmatrix} \hspace{2mm}and\hspace{2mm}M^3=0 \)

Then \( J^n=\bigg(2I\bigg)^n+n\bigg(2I\bigg)^{n-1}M+\frac{n(n-1)}{2}M^2\times 2^{n-2} \)

Thus, \( X_n=P\bigg(2^nI+2^nnM+\frac{n(n-1)}{2}\times 2^{n-2}M^2\bigg)P^{-1}X_0 \)

 


Answer

Therefore. 

a). \( P(\lambda)=-\bigg(\lambda-2\bigg)^3 \)

b). \( E_2=span\left\{\begin{pmatrix}-\frac{3}{2}\\ 1\\ 1\end{pmatrix}\right\} \)

c).\( A=PJP^{-1}\hspace{2mm}where\hspace{2mm}J=\begin{pmatrix}2&1&0\\ 0&2&1\\ 0&0&0\end{pmatrix},P=\begin{pmatrix}-6&-4&1\\ 4&2&0\\ 4&4&0\end{pmatrix} \)

d). \( X_n=P\bigg(2^nI+2^nnM+\frac{n(n-1)}{2}\times 2^{n-2}M^2\bigg)P^{-1}X_0 \)

Related Solutions

Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and \( \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} \)(no need distinct) be eigenvalues of A. Show that  a). \( \sum _{i=1}^n\lambda _i=tr\left(A\right) \)  b). \( \:\prod _{i=1}^n\lambda _i=\left|A\right|\: \)  
Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and\( \hspace{2mm} m_A(\lambda)\hspace{2mm} \) be its minimal polynomial. Let f be a polynomial satisfies\( \hspace{2mm}f(A) = 0. \hspace{2mm} \)Show that\( \hspace{2mm} f(\lambda) \hspace{2mm} \)is divisible by\( \hspace{2mm} m_A(\lambda). \)
Jordan Canonical Form
Let A be a square matrix defined by \( A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} \)Find the minimal polynomial of A. Then express \( A^4 \) and \( A^{-1} \) in terms of A and I.
Jordan Canonical Form
Determine the value of a so that \( \lambda = 2 \) is an eigenvalue of  \( A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} \) Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let \( A\in M_6(\mathbb{R}) \) be an invertible matrix satisfies \( A^3-4A^2 + 3A = 0 \) and \( tr(A) = 8. \) Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over \( \mathbb{R} \) (c) Show that A is diagonalizable over\( \mathbb{C} \). Find the eigenspaces. Diagonalize A. (d) Express \( A^n \) in the form of \( a_nA^2+b_ nA+c_nI_n \) where \( (a_n), (b_n) \) and \( (c_n) \) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write \( A^n \) in terms of \( I, A,A^2 \) and n.  
Jordan Canonical Form
Let A be a square matrix defined by\( A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write \( A^n \) in term of n.
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write \( A^n \) in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT