Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix}

(a) Find the characteristic polynomial of A.

(b) Show that A is diagonalizable then diagonalize it.

(c) Write An A^n in term of n.

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

we have A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix}

    P(λ)=AλI=(1)3(λ3S1λ2+S2λS3) \implies P(\lambda)=|A-\lambda I|=\bigg(-1\bigg)^3\bigg(\lambda^3-S_1\lambda^2+S_2\lambda-S_3\bigg)

S1=tr(A)=1+5+1=5 \bullet \hspace{2mm}S_1=tr(A)=-1+5+1=5

S2=5131+1131+1335=84+4=8 \bullet \hspace{2mm}S_2=\begin{vmatrix}5&-1\\ 3&1\end{vmatrix}+\begin{vmatrix}-1&-1\\ -3&1\end{vmatrix}+\begin{vmatrix}-1&3\\ \:-3&5\end{vmatrix}=8-4+4=8

S3=A=(5+9+9)(15+39)=139=4 \bullet \hspace{2mm}S_3=|A|=\bigg(-5+9+9\bigg)-\bigg(15+3-9\bigg)=13-9=4

so, P(λ)=(λ35λ2+8λ4)=λ(λ1)(λ2)2 P(\lambda)=-\bigg(\lambda^3-5\lambda^2+8\lambda-4\bigg)=-\lambda\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2

(b). Show that A is diagonalizable then diagonalize it

since,

P(λ)=0    λ(λ1)(λ2)2    λ=1,2,2 P(\lambda)=0\implies \lambda\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2 \iff \lambda =1,2,2\hspace{2mm}

    spect(A)={1,2} \implies spect(A)=\left\{1,2\right\}

Then am(1)=1,am(2)=2 am(1)=1,am(2)=2

Forλ=2 \bullet \hspace{2mm}For\hspace{2mm} \lambda =2 x=(x1x2x3)E2 x=\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}\in E_2\hspace{2mm} then x0 x\neq 0 and (A2I)x=0 \bigg(A-2I\bigg)x=0     A2I=(331331331)(331000000) \implies A-2I=\begin{pmatrix}-3&3&-1\\ -3&3&-1\\ -3&3&-1\end{pmatrix}\sim \begin{pmatrix}-3&3&-1\\ 0&0&0\\ 0&0&0\end{pmatrix}

Let x1=S,x2=t    x3=3S+3t x_1=S,x_2=t\implies x_3=-3S+3t

    x=(St3S+3t)=t(013)+S(103),S,tR \implies x=\begin{pmatrix}S\\ t\\ -3S+3t\end{pmatrix}=t\begin{pmatrix}0\\ 1\\ 3\end{pmatrix}+S\begin{pmatrix}1\\ 0\\ -3\end{pmatrix},S,t\in \mathbb{R}

So, E2=span{(013),(103)}    gm(2)=dim(E2)=am(2)=2 E_2=span\left\{\begin{pmatrix}0\\ \:1\\ \:3\end{pmatrix},\begin{pmatrix}1\\ \:0\\ \:-3\end{pmatrix}\right\}\implies gm(2)=dim(E_2)=am(2)=2

since. λSpect(A),gm(λ)=am(λ) \forall \lambda\in Spect(A)\hspace{2mm},gm(\lambda)=am(\lambda) and

P(λ)=(λ1)(λ2)2 P(\lambda)=-\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2\hspace{2mm} is  split

Forλ=1:Letx=(x1x2x3)E1,Thenx0and(AI)x=0 \bullet \hspace{2mm}For \hspace{2mm}\lambda=1 : \hspace{2mm}Let \hspace{2mm}x=\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}\in E_1 \hspace{2mm},Then \hspace {2mm} x\neq 0 \hspace{2mm}and \hspace{2mm} \bigg(A-I\bigg)x=0

    AI=(231341330)(110341231) \implies A-I=\begin{pmatrix}-2&3&-1\\ -3&4&-1\\ -3&3&0\end{pmatrix}\sim \begin{pmatrix}1&-1&0\\ -3&4&-1\\ -2&3&-1\end{pmatrix}

                      (110011011)(110011000) \sim \begin{pmatrix}1&-1&0\\ 0&1&-1\\ 0&1&-1\end{pmatrix}\sim \begin{pmatrix}1&-1&0\\ 0&1&-1\\ 0&0&0\end{pmatrix}

Let x3=t    x2=t,x1=t    x=(ttt)=t(111),tR x_3=t\implies x_2=t,x_1=t\iff x=\begin{pmatrix}t\\ t\\ t\end{pmatrix}=t\begin{pmatrix}1\\ 1\\ 1\end{pmatrix},t\in \mathbb{R}

Then gm(1)=dimE1=am(1)=1 gm(1)=dimE_1=am(1)=1\hspace{2mm} so A is diagonalizable

Thus AD    A=PDP1    AP=PD A\sim D\iff A=PDP^{-1}\iff AP=PD

where \( D=\begin{pmatrix}1&0&0\\ 0&2&0\\ 0&0&2\end{pmatrix},P=\begin{pmatrix}1&1&0\\ 1&0&1\\ 1&-3&3\end{pmatrix}$\implies Index(1),Index(2)=2 \)

(c) Write An A^n \hspace{2mm} in term of n.

we have m(x)=(x1)(x2) m(x)=\bigg(x-1\bigg)\bigg(x-2\bigg)

    xn=m(x)q(x)+ax+b \implies x^n=m(x)q(x)+ax+b

    {a+b=12a+b=2n    {a=2n1b=1a=22n \iff \begin{cases} a+b=1 & \quad \\ 2a+b=2^n & \quad \end{cases} \implies \begin{cases} a=2^n-1 & \quad \\ b=1-a=2-2^n & \quad \end{cases}

Then An=aA+bI=(2n1)A+(22n)I A^n=aA+bI=\bigg(2^n-1\bigg)A+\bigg(2-2^n\bigg)I

               =(2n1)(131351331)+(22n)(100010001) =\bigg(2^n-1\bigg)\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix}+\bigg(2-2^n\bigg)\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}

Threfore. An=(32n+13(2n1)12n3(2n1)2n+2312n3(2n1)3(2n1)1) A^n=\begin{pmatrix}3-2^{n+1}&3\left(2^n-1\right)&1-2^n\\ -3\left(2^n-1\right)&2^{n+2}-3&1-2^n\\ -3\left(2^n-1\right)&3\left(2^n-1\right)&1\end{pmatrix}


Answer

Therefore.

a). P(λ)=(λ35λ2+8λ4)=λ(λ1)(λ2)2 P(\lambda)=-\bigg(\lambda^3-5\lambda^2+8\lambda-4\bigg)=-\lambda\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2

b). \( D=\begin{pmatrix}1&0&0\\ 0&2&0\\ 0&0&2\end{pmatrix},P=\begin{pmatrix}1&1&0\\ 1&0&1\\ 1&-3&3\end{pmatrix}$\implies Index(1),Index(2)=2 \)

c). An=(32n+13(2n1)12n3(2n1)2n+2312n3(2n1)3(2n1)1) A^n=\begin{pmatrix}3-2^{n+1}&3\left(2^n-1\right)&1-2^n\\ -3\left(2^n-1\right)&2^{n+2}-3&1-2^n\\ -3\left(2^n-1\right)&3\left(2^n-1\right)&1\end{pmatrix}

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.
Jordan Canonical Form
Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of  A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R} (c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A. (d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying. {an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}  
Jordan Canonical Form
Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.  
Jordan Canonical Form
Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT