Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by \( A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} \)

(a) Find the characteristic polynomial of A.

(b) Show that A is diagonalizable then diagonalize it.

(c) Write \( A^n \) in term of n.

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

we have \( A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} \)

\( \implies P(\lambda)=|A-\lambda I|=\bigg(-1\bigg)^3\bigg(\lambda^3-S_1\lambda^2+S_2\lambda-S_3\bigg) \)

\( \bullet \hspace{2mm}S_1=tr(A)=-1+5+1=5 \)

\( \bullet \hspace{2mm}S_2=\begin{vmatrix}5&-1\\ 3&1\end{vmatrix}+\begin{vmatrix}-1&-1\\ -3&1\end{vmatrix}+\begin{vmatrix}-1&3\\ \:-3&5\end{vmatrix}=8-4+4=8 \)

\( \bullet \hspace{2mm}S_3=|A|=\bigg(-5+9+9\bigg)-\bigg(15+3-9\bigg)=13-9=4 \)

so, \( P(\lambda)=-\bigg(\lambda^3-5\lambda^2+8\lambda-4\bigg)=-\lambda\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2 \)

(b). Show that A is diagonalizable then diagonalize it

since,

\( P(\lambda)=0\implies \lambda\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2 \iff \lambda =1,2,2\hspace{2mm} \)

\( \implies spect(A)=\left\{1,2\right\} \)

Then \( am(1)=1,am(2)=2 \)

\( \bullet \hspace{2mm}For\hspace{2mm} \lambda =2 \) \( x=\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}\in E_2\hspace{2mm} \) then \( x\neq 0 \) and \( \bigg(A-2I\bigg)x=0 \)\( \implies A-2I=\begin{pmatrix}-3&3&-1\\ -3&3&-1\\ -3&3&-1\end{pmatrix}\sim \begin{pmatrix}-3&3&-1\\ 0&0&0\\ 0&0&0\end{pmatrix} \)

Let \( x_1=S,x_2=t\implies x_3=-3S+3t \)

\( \implies x=\begin{pmatrix}S\\ t\\ -3S+3t\end{pmatrix}=t\begin{pmatrix}0\\ 1\\ 3\end{pmatrix}+S\begin{pmatrix}1\\ 0\\ -3\end{pmatrix},S,t\in \mathbb{R} \)

So, \( E_2=span\left\{\begin{pmatrix}0\\ \:1\\ \:3\end{pmatrix},\begin{pmatrix}1\\ \:0\\ \:-3\end{pmatrix}\right\}\implies gm(2)=dim(E_2)=am(2)=2 \)

since. \( \forall \lambda\in Spect(A)\hspace{2mm},gm(\lambda)=am(\lambda) \) and

\( P(\lambda)=-\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2\hspace{2mm} \) is  split

\( \bullet \hspace{2mm}For \hspace{2mm}\lambda=1 : \hspace{2mm}Let \hspace{2mm}x=\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}\in E_1 \hspace{2mm},Then \hspace {2mm} x\neq 0 \hspace{2mm}and \hspace{2mm} \bigg(A-I\bigg)x=0 \)

\( \implies A-I=\begin{pmatrix}-2&3&-1\\ -3&4&-1\\ -3&3&0\end{pmatrix}\sim \begin{pmatrix}1&-1&0\\ -3&4&-1\\ -2&3&-1\end{pmatrix} \)

                      \( \sim \begin{pmatrix}1&-1&0\\ 0&1&-1\\ 0&1&-1\end{pmatrix}\sim \begin{pmatrix}1&-1&0\\ 0&1&-1\\ 0&0&0\end{pmatrix} \)

Let \( x_3=t\implies x_2=t,x_1=t\iff x=\begin{pmatrix}t\\ t\\ t\end{pmatrix}=t\begin{pmatrix}1\\ 1\\ 1\end{pmatrix},t\in \mathbb{R} \)

Then \( gm(1)=dimE_1=am(1)=1\hspace{2mm} \)so A is diagonalizable

Thus \( A\sim D\iff A=PDP^{-1}\iff AP=PD \)

where \( D=\begin{pmatrix}1&0&0\\ 0&2&0\\ 0&0&2\end{pmatrix},P=\begin{pmatrix}1&1&0\\ 1&0&1\\ 1&-3&3\end{pmatrix}$\implies Index(1),Index(2)=2 \)

(c) Write \( A^n \) \hspace{2mm} in term of n.

we have \( m(x)=\bigg(x-1\bigg)\bigg(x-2\bigg) \)

\( \implies x^n=m(x)q(x)+ax+b \)

\( \iff \begin{cases} a+b=1 & \quad \\ 2a+b=2^n & \quad \end{cases} \implies \begin{cases} a=2^n-1 & \quad \\ b=1-a=2-2^n & \quad \end{cases} \)

Then \( A^n=aA+bI=\bigg(2^n-1\bigg)A+\bigg(2-2^n\bigg)I \)

               \( =\bigg(2^n-1\bigg)\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix}+\bigg(2-2^n\bigg)\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix} \)

Threfore. \( A^n=\begin{pmatrix}3-2^{n+1}&3\left(2^n-1\right)&1-2^n\\ -3\left(2^n-1\right)&2^{n+2}-3&1-2^n\\ -3\left(2^n-1\right)&3\left(2^n-1\right)&1\end{pmatrix} \)


Answer

Therefore.

a). \( P(\lambda)=-\bigg(\lambda^3-5\lambda^2+8\lambda-4\bigg)=-\lambda\bigg(\lambda-1\bigg)\bigg(\lambda-2\bigg)^2 \)

b). \( D=\begin{pmatrix}1&0&0\\ 0&2&0\\ 0&0&2\end{pmatrix},P=\begin{pmatrix}1&1&0\\ 1&0&1\\ 1&-3&3\end{pmatrix}$\implies Index(1),Index(2)=2 \)

c). \( A^n=\begin{pmatrix}3-2^{n+1}&3\left(2^n-1\right)&1-2^n\\ -3\left(2^n-1\right)&2^{n+2}-3&1-2^n\\ -3\left(2^n-1\right)&3\left(2^n-1\right)&1\end{pmatrix} \)

Related Solutions

Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and \( \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} \)(no need distinct) be eigenvalues of A. Show that  a). \( \sum _{i=1}^n\lambda _i=tr\left(A\right) \)  b). \( \:\prod _{i=1}^n\lambda _i=\left|A\right|\: \)  
Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and\( \hspace{2mm} m_A(\lambda)\hspace{2mm} \) be its minimal polynomial. Let f be a polynomial satisfies\( \hspace{2mm}f(A) = 0. \hspace{2mm} \)Show that\( \hspace{2mm} f(\lambda) \hspace{2mm} \)is divisible by\( \hspace{2mm} m_A(\lambda). \)
Jordan Canonical Form
Let A be a square matrix defined by \( A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} \)Find the minimal polynomial of A. Then express \( A^4 \) and \( A^{-1} \) in terms of A and I.
Jordan Canonical Form
Determine the value of a so that \( \lambda = 2 \) is an eigenvalue of  \( A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} \) Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let \( A\in M_6(\mathbb{R}) \) be an invertible matrix satisfies \( A^3-4A^2 + 3A = 0 \) and \( tr(A) = 8. \) Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over \( \mathbb{R} \) (c) Show that A is diagonalizable over\( \mathbb{C} \). Find the eigenspaces. Diagonalize A. (d) Express \( A^n \) in the form of \( a_nA^2+b_ nA+c_nI_n \) where \( (a_n), (b_n) \) and \( (c_n) \) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences \( (a)_n, (b)_n ,(c)_n \) satisfying. \( \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases} \)  
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write \( A^n \) in terms of \( I, A,A^2 \) and n.  
Jordan Canonical Form
Let A be a square matrix defined by\( A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write \( A^n \) in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT