Question

In: Advanced Math

Jordan Canonical Form

Determine the value of a so that \( \lambda = 2 \) is an eigenvalue of 

\( A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} \)

Then show that A is diagonallizable and diagonalize it. 

Solutions

Expert Solution

Solution

we have \( A-2I=\begin{pmatrix}-1&-1&0\\ a&-1&1\\ 0&1+a&3\end{pmatrix} \)

Then if \( \lambda =2\in SP(A) \)

\( \implies |A-2I|=\begin{vmatrix}-1&-1&0\\ \:a&-1&1\\ \:0&1+a&3\end{vmatrix}=0 \) Thus, \( a=-1 \)

we have \( A=\begin{pmatrix}1&-1&0\\ -1&1&1\\ 0&0&3\end{pmatrix} \)

\( \implies P(\lambda)=|A-\lambda I|=\begin{vmatrix}1-\lambda &-1&0\\ \:-1&1-\lambda \:&1\\ \:0&0&3-\lambda \:\end{vmatrix} \)

                    \( =\bigg(3-\lambda\bigg)\bigg[\bigg(1-\lambda\bigg)^2-1\bigg] \)

\( \implies P(\lambda)=\bigg(3-\lambda\bigg)\bigg(1-2\lambda+\lambda^2-1\bigg) \)

                     \( =\lambda\bigg(\lambda-2\bigg)\bigg(3-\lambda\bigg) \)

since, \( A\in M_3(\mathbb{R}) \) and \( P(\lambda)=\lambda\bigg(\lambda-2\bigg)\bigg(3-\lambda\bigg) \)

\( \color{red}Note : Theorem21 \)

(1) The characteristic polynomial \( P_L(\lambda) \) splits over \( \mathbb{K} \)

(2) Every eigenvalue \( \lambda \) of L \( am(\lambda)=gm(\lambda) \)

By Theorem 21\( \implies am(\lambda)=gm(\lambda)=1 ,\forall \lambda \iff SP(\lambda) \)

\( \bullet \) Find  \( E_0 \)

\( \implies A-(0)I= \begin{pmatrix}1&-1&0\\ -1&1&1\\ 0&0&3\end{pmatrix}\sim \begin{pmatrix}0&0&1\\ 1&-1&0\\ 0&0&0\end{pmatrix}\hspace{2mm} \)

Then \( E_0=span\left\{\begin{pmatrix}1\\ 1\\ 0\end{pmatrix}\right\} \)

\( \bullet \) Find \( E_2 \)

\( \implies A-2I=\begin{pmatrix}-1&-1&0\\ -1&-1&1\\ 0&0&1\end{pmatrix}\sim \begin{pmatrix}-1&-1&0\\ 0&0&1\\ 0&0&0\end{pmatrix} \)

Then \( E_2=span\left\{\begin{pmatrix}1\\ -1\\ 0\end{pmatrix}\right\} \)

\( \bullet \) Find \( E_3 \) 

\( \implies A-3I=\begin{pmatrix}-2&-1&0\\ -1&-2&1\\ 0&0&0\end{pmatrix}\sim \begin{pmatrix}2&1&0\\ 0&3&1\\ 0&0&0\end{pmatrix} \)

Then \( E_3=span\left\{\begin{pmatrix}-1\\ 2\\ 3\end{pmatrix}\right\} \)

since. \( dimE_0+dimE_2+dimE_3=3=\mathbb{R} \)

A is diagonalizable in \( \mathbb{R} \)

Therefore. \( A=PDP^{-1} \) where \( D=\begin{pmatrix}0&0&0\\ 0&2&0\\ 0&0&3\end{pmatrix},P=\begin{pmatrix}1&1&-1\\ 1&-1&2\\ 0&0&3\end{pmatrix} \)


Answer

Therefore.

\( A=PDP^{-1} \) where  \( D=\begin{pmatrix}0&0&0\\ 0&2&0\\ 0&0&3\end{pmatrix} \) and \( P=\begin{pmatrix}1&1&-1\\ 1&-1&2\\ 0&0&3\end{pmatrix} \)

Related Solutions

Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and \( \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} \)(no need distinct) be eigenvalues of A. Show that  a). \( \sum _{i=1}^n\lambda _i=tr\left(A\right) \)  b). \( \:\prod _{i=1}^n\lambda _i=\left|A\right|\: \)  
Jordan Canonical Form
Let \( A\in M_n(\mathbb{R})\hspace{2mm} \) and\( \hspace{2mm} m_A(\lambda)\hspace{2mm} \) be its minimal polynomial. Let f be a polynomial satisfies\( \hspace{2mm}f(A) = 0. \hspace{2mm} \)Show that\( \hspace{2mm} f(\lambda) \hspace{2mm} \)is divisible by\( \hspace{2mm} m_A(\lambda). \)
Jordan Canonical Form
Let A be a square matrix defined by \( A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} \)Find the minimal polynomial of A. Then express \( A^4 \) and \( A^{-1} \) in terms of A and I.
Jordan Canonical Form
Let \( A\in M_6(\mathbb{R}) \) be an invertible matrix satisfies \( A^3-4A^2 + 3A = 0 \) and \( tr(A) = 8. \) Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over \( \mathbb{R} \) (c) Show that A is diagonalizable over\( \mathbb{C} \). Find the eigenspaces. Diagonalize A. (d) Express \( A^n \) in the form of \( a_nA^2+b_ nA+c_nI_n \) where \( (a_n), (b_n) \) and \( (c_n) \) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences \( (a)_n, (b)_n ,(c)_n \) satisfying. \( \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases} \)  
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write \( A^n \) in terms of \( I, A,A^2 \) and n.  
Jordan Canonical Form
Let A be a square matrix defined by\( A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by \( A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write \( A^n \) in term of n.
Jordan Canonical Form
Let A be a square matrix defined by \( A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} \) (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write \( A^n \) in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT