Question

In: Advanced Math

Jordan Canonical Form

Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of 

A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix}

Then show that A is diagonallizable and diagonalize it. 

Solutions

Expert Solution

Solution

we have A2I=(110a1101+a3) A-2I=\begin{pmatrix}-1&-1&0\\ a&-1&1\\ 0&1+a&3\end{pmatrix}

Then if λ=2SP(A) \lambda =2\in SP(A)

    A2I=110a1101+a3=0 \implies |A-2I|=\begin{vmatrix}-1&-1&0\\ \:a&-1&1\\ \:0&1+a&3\end{vmatrix}=0 Thus, a=1 a=-1

we have A=(110111003) A=\begin{pmatrix}1&-1&0\\ -1&1&1\\ 0&0&3\end{pmatrix}

    P(λ)=AλI=1λ1011λ1003λ \implies P(\lambda)=|A-\lambda I|=\begin{vmatrix}1-\lambda &-1&0\\ \:-1&1-\lambda \:&1\\ \:0&0&3-\lambda \:\end{vmatrix}

                    =(3λ)[(1λ)21] =\bigg(3-\lambda\bigg)\bigg[\bigg(1-\lambda\bigg)^2-1\bigg]

    P(λ)=(3λ)(12λ+λ21) \implies P(\lambda)=\bigg(3-\lambda\bigg)\bigg(1-2\lambda+\lambda^2-1\bigg)

                     =λ(λ2)(3λ) =\lambda\bigg(\lambda-2\bigg)\bigg(3-\lambda\bigg)

since, AM3(R) A\in M_3(\mathbb{R}) and P(λ)=λ(λ2)(3λ) P(\lambda)=\lambda\bigg(\lambda-2\bigg)\bigg(3-\lambda\bigg)

Note:Theorem21 \color{red}Note : Theorem21

(1) The characteristic polynomial PL(λ) P_L(\lambda) splits over K \mathbb{K}

(2) Every eigenvalue λ \lambda of L am(λ)=gm(λ) am(\lambda)=gm(\lambda)

By Theorem 21    am(λ)=gm(λ)=1,λ    SP(λ) \implies am(\lambda)=gm(\lambda)=1 ,\forall \lambda \iff SP(\lambda)

\bullet Find  E0 E_0

    A(0)I=(110111003)(001110000) \implies A-(0)I= \begin{pmatrix}1&-1&0\\ -1&1&1\\ 0&0&3\end{pmatrix}\sim \begin{pmatrix}0&0&1\\ 1&-1&0\\ 0&0&0\end{pmatrix}\hspace{2mm}

Then E0=span{(110)} E_0=span\left\{\begin{pmatrix}1\\ 1\\ 0\end{pmatrix}\right\}

\bullet Find E2 E_2

    A2I=(110111001)(110001000) \implies A-2I=\begin{pmatrix}-1&-1&0\\ -1&-1&1\\ 0&0&1\end{pmatrix}\sim \begin{pmatrix}-1&-1&0\\ 0&0&1\\ 0&0&0\end{pmatrix}

Then E2=span{(110)} E_2=span\left\{\begin{pmatrix}1\\ -1\\ 0\end{pmatrix}\right\}

\bullet Find E3 E_3  

    A3I=(210121000)(210031000) \implies A-3I=\begin{pmatrix}-2&-1&0\\ -1&-2&1\\ 0&0&0\end{pmatrix}\sim \begin{pmatrix}2&1&0\\ 0&3&1\\ 0&0&0\end{pmatrix}

Then E3=span{(123)} E_3=span\left\{\begin{pmatrix}-1\\ 2\\ 3\end{pmatrix}\right\}

since. dimE0+dimE2+dimE3=3=R dimE_0+dimE_2+dimE_3=3=\mathbb{R}

A is diagonalizable in R \mathbb{R}

Therefore. A=PDP1 A=PDP^{-1} where D=(000020003),P=(111112003) D=\begin{pmatrix}0&0&0\\ 0&2&0\\ 0&0&3\end{pmatrix},P=\begin{pmatrix}1&1&-1\\ 1&-1&2\\ 0&0&3\end{pmatrix}


Answer

Therefore.

A=PDP1 A=PDP^{-1} where  D=(000020003) D=\begin{pmatrix}0&0&0\\ 0&2&0\\ 0&0&3\end{pmatrix} and P=(111112003) P=\begin{pmatrix}1&1&-1\\ 1&-1&2\\ 0&0&3\end{pmatrix}

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R} (c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A. (d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying. {an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}  
Jordan Canonical Form
Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.  
Jordan Canonical Form
Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT