Solution
(a) Find the characteristic polynomial of A.
we have A = ( − 8 − 3 − 6 4 0 4 4 2 2 ) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix} A = ⎝ ⎛ − 8 4 4 − 3 0 2 − 6 4 2 ⎠ ⎞
⟹ P ( λ ) = ∣ A − λ I ∣ = − λ 3 − 6 λ 2 − 12 λ − 8 = − ( λ + 2 ) 3 \implies P(\lambda)=|A-\lambda I|=-\lambda^3-6\lambda^2-12\lambda-8=-\bigg(\lambda+2\bigg)^3 ⟹ P ( λ ) = ∣ A − λ I ∣ = − λ 3 − 6 λ 2 − 1 2 λ − 8 = − ( λ + 2 ) 3
So. P ( λ ) = − ( λ + 2 ) 3 P(\lambda)=-\bigg(\lambda+2\bigg)^3 P ( λ ) = − ( λ + 2 ) 3
(b) Find the eigenvalues and eigenspaces of A.
∀ λ ∈ s p ( A ) ⟺ P ( λ ) = 0 ⟹ λ = 2 w i t h a m ( − 2 ) = 3 \forall \lambda\in sp(A)\iff P(\lambda)=0\implies \lambda=2 \hspace{2mm}with \hspace{2mm}am(-2)=3 ∀ λ ∈ s p ( A ) ⟺ P ( λ ) = 0 ⟹ λ = 2 w i t h a m ( − 2 ) = 3
∙ F i n d e i g e n s p a c e \bullet \hspace{2mm}Find\hspace{2mm} eigenspace ∙ F i n d e i g e n s p a c e
A + 2 I = ( − 6 − 3 − 6 4 2 4 4 2 4 ) ∼ ( − 6 − 3 − 6 0 0 0 0 0 0 ) ⟹ 2 x 1 + x 2 + 2 x 3 = 0 A+2I=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}\sim \begin{pmatrix}-6&-3&-6\\ 0&0&0\\ 0&0&0\end{pmatrix} \implies 2x_1+x_2+2x_3=0 A + 2 I = ⎝ ⎛ − 6 4 4 − 3 2 2 − 6 4 4 ⎠ ⎞ ∼ ⎝ ⎛ − 6 0 0 − 3 0 0 − 6 0 0 ⎠ ⎞ ⟹ 2 x 1 + x 2 + 2 x 3 = 0
Thus, E 2 = s p a n { ( 1 − 2 0 ) , ( 0 − 2 1 ) } E_2=span\left\{\begin{pmatrix}1\\ -2\\ 0\end{pmatrix},\begin{pmatrix}0\\ -2\\ 1\end{pmatrix}\right\} E 2 = s p a n ⎩ ⎪ ⎨ ⎪ ⎧ ⎝ ⎛ 1 − 2 0 ⎠ ⎞ , ⎝ ⎛ 0 − 2 1 ⎠ ⎞ ⎭ ⎪ ⎬ ⎪ ⎫
(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.
since. P ( λ ) P(\lambda) P ( λ ) $ is splitted and d i m ( E 2 ) = 2 ≠ a m ( − 2 dim(E_2)=2 \neq am(-2 d i m ( E 2 ) = 2 = a m ( − 2 )
Then A is not diaginalizable but it's triangularizable.
∙ T r i a n g u l a r i z a b l e i t \bullet \hspace{2mm}Triangularizable \hspace{2mm}it ∙ T r i a n g u l a r i z a b l e i t
That is A = P J P − 1 w h e r e J = ( − 2 1 0 0 − 2 0 0 0 − 2 ) A=PJP^{-1} \hspace{2mm} where\hspace{2mm} J=\begin{pmatrix}-2&1&0\\ 0&-2&0\\ 0&0&-2\end{pmatrix} A = P J P − 1 w h e r e J = ⎝ ⎛ − 2 0 0 1 − 2 0 0 0 − 2 ⎠ ⎞
we have A + 2 I = ( − 6 − 3 − 6 4 2 4 4 2 4 ) A+2I=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix} A + 2 I = ⎝ ⎛ − 6 4 4 − 3 2 2 − 6 4 4 ⎠ ⎞
⟹ ( A + 2 I ) 2 = ( − 6 − 3 − 6 4 2 4 4 2 4 ) ( − 6 − 3 − 6 4 2 4 4 2 4 ) = 0 \implies \bigg(A+2I\bigg)^2=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}=0 ⟹ ( A + 2 I ) 2 = ⎝ ⎛ − 6 4 4 − 3 2 2 − 6 4 4 ⎠ ⎞ ⎝ ⎛ − 6 4 4 − 3 2 2 − 6 4 4 ⎠ ⎞ = 0
Then, G λ = { x ∈ R : ( A + 2 I ) 2 x = 0 } G_{\lambda}=\left\{x\in \mathbb{R} : \bigg(A+2I\bigg)^2x=0\right\} \hspace{2mm} G λ = { x ∈ R : ( A + 2 I ) 2 x = 0 }
⟹ G λ = { ( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) } \implies\hspace{2mm} G_{\lambda}=\left\{\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\begin{pmatrix}0\\ 1\\ 0\end{pmatrix},\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}\right\} ⟹ G λ = ⎩ ⎪ ⎨ ⎪ ⎧ ⎝ ⎛ 1 0 0 ⎠ ⎞ , ⎝ ⎛ 0 1 0 ⎠ ⎞ , ⎝ ⎛ 0 0 1 ⎠ ⎞ ⎭ ⎪ ⎬ ⎪ ⎫
V 2 ∈ G λ − R λ ⟹ V 2 = ( 1 0 0 ) V_2\in G_{\lambda}-R_{\lambda}\implies V_2=\begin{pmatrix}1\\ 0\\ 0\end{pmatrix}\hspace{2mm} V 2 ∈ G λ − R λ ⟹ V 2 = ⎝ ⎛ 1 0 0 ⎠ ⎞ then, V 1 = ( A + 2 I ) , V 2 = ( − 6 − 3 − 6 4 2 4 4 2 4 ) ( 1 0 0 ) = ( − 6 4 4 ) V_1=\bigg(A+2I\bigg),V_2=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}\begin{pmatrix}1\\ 0\\ 0\end{pmatrix}=\begin{pmatrix}-6\\ 4\\ 4\end{pmatrix} V 1 = ( A + 2 I ) , V 2 = ⎝ ⎛ − 6 4 4 − 3 2 2 − 6 4 4 ⎠ ⎞ ⎝ ⎛ 1 0 0 ⎠ ⎞ = ⎝ ⎛ − 6 4 4 ⎠ ⎞
Therefore , A = P D P − 1 J = ( − 2 1 0 0 − 2 0 0 0 − 2 ) , P = ( − 6 1 1 4 0 − 2 4 0 0 ) A=PDP^{-1}\hspace{2mm}J=\begin{pmatrix}-2&1&0\\ 0&-2&0\\ 0&0&-2\end{pmatrix},P=\begin{pmatrix}-6&1&1\\ 4&0&-2\\ 4&0&0\end{pmatrix} A = P D P − 1 J = ⎝ ⎛ − 2 0 0 1 − 2 0 0 0 − 2 ⎠ ⎞ , P = ⎝ ⎛ − 6 4 4 1 0 0 1 − 2 0 ⎠ ⎞
(d) Write A n A^n A n in terms of I , A , A 2 I, A,A^2 I , A , A 2 and n.
we have P ( λ ) = − ( λ + 2 ) 3 o r P ( x ) = − ( x + 2 ) 3 P(\lambda)=-\bigg(\lambda+2\bigg)^3\hspace{2mm} or\hspace{2mm} P(x)=-\bigg(x+2\bigg)^3 P ( λ ) = − ( λ + 2 ) 3 o r P ( x ) = − ( x + 2 ) 3
Let f ( x ) = x n f(x)=x^n f ( x ) = x n
⟹ x n = P ( x ) Q ( x ) + A x 2 + B x + C , A , B , C ∈ R \implies x^n=P(x)Q(x)+Ax^2+Bx+C \hspace{2mm},A,B,C\in \mathbb{R} ⟹ x n = P ( x ) Q ( x ) + A x 2 + B x + C , A , B , C ∈ R
n x n − 1 = P ′ ( x ) Q ( x ) + Q ′ ( x ) P ( x ) + 2 A x + B nx^{n-1}=P'(x)Q(x)+Q'(x)P(x)+2Ax+B n x n − 1 = P ′ ( x ) Q ( x ) + Q ′ ( x ) P ( x ) + 2 A x + B
n ( n − 1 ) x n − 2 = P ′ ′ ( x ) Q ( x ) + Q ′ ( x ) P ′ ( x ) + Q ′ ′ ( x ) P ( x ) + P ′ ( x ) Q ′ ( X ) + 2 A n\bigg(n-1\bigg)x^{n-2}=P''(x)Q(x)+Q'(x)P'(x)+Q''(x)P(x)+P'(x)Q'(X)+2A n ( n − 1 ) x n − 2 = P ′ ′ ( x ) Q ( x ) + Q ′ ( x ) P ′ ( x ) + Q ′ ′ ( x ) P ( x ) + P ′ ( x ) Q ′ ( X ) + 2 A
we have P ( 2 ) = P ′ ( 2 ) = P ′ ′ ( 2 ) = 0 P(2)=P'(2)=P''(2)=0 P ( 2 ) = P ′ ( 2 ) = P ′ ′ ( 2 ) = 0
⟺ { 2 n = 4 A + 2 B + C n 2 n − 1 = 2 2 A + B n ( n − 1 ) 2 n − 2 = 2 A ⟹ { A = n ( n − 1 ) 2 n − 3 B = n 2 n − 1 − n ( n − 1 ) 2 n − 1 C = 2 n − n ( n − 1 ) 2 n − 1 − 2 B \iff \begin{cases}
2^n=4A+2B+C & \quad \\
n2^{n-1}=2^2A+B & \quad \\
n(n-1)2^{n-2}=2A & \quad
\end{cases} \implies \begin{cases}
A=n(n-1)2^{n-3} & \quad \\
B=n2^{n-1}-n(n-1)2^{n-1} & \quad \\
C=2^n-n(n-1)2^{n-1}-2B & \quad
\end{cases} ⟺ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 2 n = 4 A + 2 B + C n 2 n − 1 = 2 2 A + B n ( n − 1 ) 2 n − 2 = 2 A ⟹ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ A = n ( n − 1 ) 2 n − 3 B = n 2 n − 1 − n ( n − 1 ) 2 n − 1 C = 2 n − n ( n − 1 ) 2 n − 1 − 2 B
⟹ { A = n ( n − 1 ) 2 n − 3 B = 2 n − 1 ( 2 n − n 2 ) = n 2 n − n 2 2 n − 1 = ( 2 n − n 2 ) n − 1 C = 2 n − n 2 2 n − 1 + n 2 n − 1 − 2 n 2 n + 2 n 2 2 n − 1 = 2 n − 1 ( 2 n 2 + 2 − 3 n ) \implies \begin{cases}
A=n(n-1)2^{n-3} & \quad \\
B=2^{n-1}(2n-n^2)=n2^n-n^22^{n-1}=(2n-n^2)^{n-1} & \quad \\
C=2^n-n^22^{n-1}+n2^{n-1}-2n2^n+2n^22^{n-1}=2^{n-1}(2n^2+2-3n) & \quad
\end{cases} ⟹ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ A = n ( n − 1 ) 2 n − 3 B = 2 n − 1 ( 2 n − n 2 ) = n 2 n − n 2 2 n − 1 = ( 2 n − n 2 ) n − 1 C = 2 n − n 2 2 n − 1 + n 2 n − 1 − 2 n 2 n + 2 n 2 2 n − 1 = 2 n − 1 ( 2 n 2 + 2 − 3 n )
⟺ A n = n ( n − 1 ) 2 n − 3 A 2 + ( 2 n − n 2 ) 2 n − 1 A + ( 2 n 2 − 3 n + 2 ) 2 n − 1 I \iff \hspace{2mm}A^n=n(n-1)2^{n-3}A^2 +(2n-n^2)2^{n-1}A+(2n^2-3n+2)2^{n-1}I ⟺ A n = n ( n − 1 ) 2 n − 3 A 2 + ( 2 n − n 2 ) 2 n − 1 A + ( 2 n 2 − 3 n + 2 ) 2 n − 1 I
Answer
Therefore.
a). P ( λ ) = − ( λ + 2 ) 3 P(\lambda)=-\bigg(\lambda+2\bigg)^3 P ( λ ) = − ( λ + 2 ) 3
b). E 2 = s p a n { ( 1 − 2 0 ) , ( 0 − 2 1 ) } E_2=span\left\{\begin{pmatrix}1\\ -2\\ 0\end{pmatrix},\begin{pmatrix}0\\ -2\\ 1\end{pmatrix}\right\} E 2 = s p a n ⎩ ⎪ ⎨ ⎪ ⎧ ⎝ ⎛ 1 − 2 0 ⎠ ⎞ , ⎝ ⎛ 0 − 2 1 ⎠ ⎞ ⎭ ⎪ ⎬ ⎪ ⎫
c). A = P D P − 1 J = ( − 2 1 0 0 − 2 0 0 0 − 2 ) , P = ( − 6 1 1 4 0 − 2 4 0 0 ) A=PDP^{-1}\hspace{2mm}J=\begin{pmatrix}-2&1&0\\ 0&-2&0\\ 0&0&-2\end{pmatrix},P=\begin{pmatrix}-6&1&1\\ 4&0&-2\\ 4&0&0\end{pmatrix} A = P D P − 1 J = ⎝ ⎛ − 2 0 0 1 − 2 0 0 0 − 2 ⎠ ⎞ , P = ⎝ ⎛ − 6 4 4 1 0 0 1 − 2 0 ⎠ ⎞
d). A n = n ( n − 1 ) 2 n − 3 ( − 8 − 3 − 6 4 0 4 4 2 2 ) 2 + ( 2 n − n 2 ) 2 n − 1 A + ( 2 n 2 − 3 n + 2 ) 2 n − 1 ( 1 0 0 0 1 0 0 0 1 ) A^n= n\left(n-1\right)2^{n-3}\begin{pmatrix}-8&-3&-6\\ \:4&0&4\\ \:4&2&2\end{pmatrix}^2+\left(2n-n^2\right)2^{n-1}A+\left(2n^2-3n+2\right)2^{n-1}\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix} A n = n ( n − 1 ) 2 n − 3 ⎝ ⎛ − 8 4 4 − 3 0 2 − 6 4 2 ⎠ ⎞ 2 + ( 2 n − n 2 ) 2 n − 1 A + ( 2 n 2 − 3 n + 2 ) 2 n − 1 ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞