Question

In: Advanced Math

Jordan Canonical Form

Let A be a square matrix defined by A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix}

(a) Find the characteristic polynomial of A.

(b) Find the eigenvalues and eigenspaces of A.

(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.

(d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.

 

Solutions

Expert Solution

Solution

(a) Find the characteristic polynomial of A.

we have A=(836404422) A =\begin{pmatrix}-8&-3&-6\\ 4&0&4\\ 4&2&2\end{pmatrix}

    P(λ)=AλI=λ36λ212λ8=(λ+2)3 \implies P(\lambda)=|A-\lambda I|=-\lambda^3-6\lambda^2-12\lambda-8=-\bigg(\lambda+2\bigg)^3

So. P(λ)=(λ+2)3 P(\lambda)=-\bigg(\lambda+2\bigg)^3

(b) Find the eigenvalues and eigenspaces of A.

λsp(A)    P(λ)=0    λ=2witham(2)=3 \forall \lambda\in sp(A)\iff P(\lambda)=0\implies \lambda=2 \hspace{2mm}with \hspace{2mm}am(-2)=3

Findeigenspace \bullet \hspace{2mm}Find\hspace{2mm} eigenspace

A+2I=(636424424)(636000000)    2x1+x2+2x3=0 A+2I=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}\sim \begin{pmatrix}-6&-3&-6\\ 0&0&0\\ 0&0&0\end{pmatrix} \implies 2x_1+x_2+2x_3=0

Thus, E2=span{(120),(021)} E_2=span\left\{\begin{pmatrix}1\\ -2\\ 0\end{pmatrix},\begin{pmatrix}0\\ -2\\ 1\end{pmatrix}\right\}

(c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.

since. P(λ) P(\lambda) $ is splitted and dim(E2)=2am(2 dim(E_2)=2 \neq am(-2 )

Then A is not diaginalizable but it's triangularizable.

Triangularizableit \bullet \hspace{2mm}Triangularizable \hspace{2mm}it

That is A=PJP1whereJ=(210020002) A=PJP^{-1} \hspace{2mm} where\hspace{2mm} J=\begin{pmatrix}-2&1&0\\ 0&-2&0\\ 0&0&-2\end{pmatrix}

we have A+2I=(636424424) A+2I=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}  

    (A+2I)2=(636424424)(636424424)=0 \implies \bigg(A+2I\bigg)^2=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}=0

Then, Gλ={xR:(A+2I)2x=0} G_{\lambda}=\left\{x\in \mathbb{R} : \bigg(A+2I\bigg)^2x=0\right\} \hspace{2mm}

    Gλ={(100),(010),(001)} \implies\hspace{2mm} G_{\lambda}=\left\{\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\begin{pmatrix}0\\ 1\\ 0\end{pmatrix},\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}\right\}

V2GλRλ    V2=(100) V_2\in G_{\lambda}-R_{\lambda}\implies V_2=\begin{pmatrix}1\\ 0\\ 0\end{pmatrix}\hspace{2mm} then, V1=(A+2I),V2=(636424424)(100)=(644) V_1=\bigg(A+2I\bigg),V_2=\begin{pmatrix}-6&-3&-6\\ 4&2&4\\ 4&2&4\end{pmatrix}\begin{pmatrix}1\\ 0\\ 0\end{pmatrix}=\begin{pmatrix}-6\\ 4\\ 4\end{pmatrix}

Therefore , A=PDP1J=(210020002),P=(611402400) A=PDP^{-1}\hspace{2mm}J=\begin{pmatrix}-2&1&0\\ 0&-2&0\\ 0&0&-2\end{pmatrix},P=\begin{pmatrix}-6&1&1\\ 4&0&-2\\ 4&0&0\end{pmatrix}

(d) Write An A^n in terms of I,A,A2 I, A,A^2 and n.

we have P(λ)=(λ+2)3orP(x)=(x+2)3 P(\lambda)=-\bigg(\lambda+2\bigg)^3\hspace{2mm} or\hspace{2mm} P(x)=-\bigg(x+2\bigg)^3

Let  f(x)=xn f(x)=x^n

    xn=P(x)Q(x)+Ax2+Bx+C,A,B,CR \implies x^n=P(x)Q(x)+Ax^2+Bx+C \hspace{2mm},A,B,C\in \mathbb{R}

nxn1=P(x)Q(x)+Q(x)P(x)+2Ax+B nx^{n-1}=P'(x)Q(x)+Q'(x)P(x)+2Ax+B

n(n1)xn2=P(x)Q(x)+Q(x)P(x)+Q(x)P(x)+P(x)Q(X)+2A n\bigg(n-1\bigg)x^{n-2}=P''(x)Q(x)+Q'(x)P'(x)+Q''(x)P(x)+P'(x)Q'(X)+2A

we have P(2)=P(2)=P(2)=0 P(2)=P'(2)=P''(2)=0

    {2n=4A+2B+Cn2n1=22A+Bn(n1)2n2=2A    {A=n(n1)2n3B=n2n1n(n1)2n1C=2nn(n1)2n12B \iff \begin{cases} 2^n=4A+2B+C & \quad \\ n2^{n-1}=2^2A+B & \quad \\ n(n-1)2^{n-2}=2A & \quad \end{cases} \implies \begin{cases} A=n(n-1)2^{n-3} & \quad \\ B=n2^{n-1}-n(n-1)2^{n-1} & \quad \\ C=2^n-n(n-1)2^{n-1}-2B & \quad \end{cases}

    {A=n(n1)2n3B=2n1(2nn2)=n2nn22n1=(2nn2)n1C=2nn22n1+n2n12n2n+2n22n1=2n1(2n2+23n) \implies \begin{cases} A=n(n-1)2^{n-3} & \quad \\ B=2^{n-1}(2n-n^2)=n2^n-n^22^{n-1}=(2n-n^2)^{n-1} & \quad \\ C=2^n-n^22^{n-1}+n2^{n-1}-2n2^n+2n^22^{n-1}=2^{n-1}(2n^2+2-3n) & \quad \end{cases}

    An=n(n1)2n3A2+(2nn2)2n1A+(2n23n+2)2n1I \iff \hspace{2mm}A^n=n(n-1)2^{n-3}A^2 +(2n-n^2)2^{n-1}A+(2n^2-3n+2)2^{n-1}I


Answer

Therefore.

a). P(λ)=(λ+2)3 P(\lambda)=-\bigg(\lambda+2\bigg)^3

b). E2=span{(120),(021)} E_2=span\left\{\begin{pmatrix}1\\ -2\\ 0\end{pmatrix},\begin{pmatrix}0\\ -2\\ 1\end{pmatrix}\right\}

c). A=PDP1J=(210020002),P=(611402400) A=PDP^{-1}\hspace{2mm}J=\begin{pmatrix}-2&1&0\\ 0&-2&0\\ 0&0&-2\end{pmatrix},P=\begin{pmatrix}-6&1&1\\ 4&0&-2\\ 4&0&0\end{pmatrix}

d). An=n(n1)2n3(836404422)2+(2nn2)2n1A+(2n23n+2)2n1(100010001) A^n= n\left(n-1\right)2^{n-3}\begin{pmatrix}-8&-3&-6\\ \:4&0&4\\ \:4&2&2\end{pmatrix}^2+\left(2n-n^2\right)2^{n-1}A+\left(2n^2-3n+2\right)2^{n-1}\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}

 

Related Solutions

Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} and λ1,λ2,...,λn \hspace{2mm}\lambda_1, \lambda_2,...,\lambda_n \hspace{2mm} (no need distinct) be eigenvalues of A. Show that  a). i=1nλi=tr(A) \sum _{i=1}^n\lambda _i=tr\left(A\right)   b). i=1nλi=A \:\prod _{i=1}^n\lambda _i=\left|A\right|\:  
Jordan Canonical Form
Let AMn(R) A\in M_n(\mathbb{R})\hspace{2mm} andmA(λ) \hspace{2mm} m_A(\lambda)\hspace{2mm} be its minimal polynomial. Let f be a polynomial satisfiesf(A)=0. \hspace{2mm}f(A) = 0. \hspace{2mm} Show thatf(λ) \hspace{2mm} f(\lambda) \hspace{2mm} is divisible bymA(λ). \hspace{2mm} m_A(\lambda).
Jordan Canonical Form
Let A be a square matrix defined by A=(421201223) A=\begin{pmatrix}4&-2&1\\ 2&0&1\\ 2&-2&3\end{pmatrix}\hspace{2mm} Find the minimal polynomial of A. Then express A4 A^4 and A1 A^{-1} in terms of A and I.
Jordan Canonical Form
Determine the value of a so that λ=2 \lambda = 2 is an eigenvalue of  A=(110a1101+a3) A=\begin{pmatrix}1&-1&0\\ a&1&1\\ 0&1+a&3\end{pmatrix} Then show that A is diagonallizable and diagonalize it. 
Jordan Canonical Form
Let AM6(R) A\in M_6(\mathbb{R}) be an invertible matrix satisfies A34A2+3A=0 A^3-4A^2 + 3A = 0 and tr(A)=8. tr(A) = 8. Find the characteristics polynomial of A.  
Jordan Canonical Form
Let A be a square matrix defined by A=(313525111) A = \begin{pmatrix}-3&-1&-3\\ 5&2&5\\ -1&-1&-1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues of A. Show that A is not diagonalizable over R \mathbb{R} (c) Show that A is diagonalizable overC \mathbb{C} . Find the eigenspaces. Diagonalize A. (d) Express An A^n in the form of anA2+bnA+cnIn a_nA^2+b_ nA+c_nI_n where (an),(bn) (a_n), (b_n) and (cn) (c_n) are real sequences to be specified....
Jordan Canonical Form
Let A be a square matrix defined by A=(215223422) A = \begin{pmatrix}-2&-1&-5\\ 2&2&3\\ 4&2&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Find the eigenvalues and eigenspaces of A. (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A. (d) Find the three real sequences (a)n,(b)n,(c)n (a)_n, (b)_n ,(c)_n satisfying. {an+1=2anbn5cn,a0=1bn+1=2an+2bn+3cn,b0=0cn+1=4an+2bn+6cn,c0=1 \begin{cases} a_{n+1}=-2a_n-b_n-5c_n \hspace{2mm},a_0=1 & \quad \\ b_{n+1}=2a_n+2b_n+3c_n \hspace{2mm}, b_0=0 & \quad \\ c_{n+1}=4a_n+2b_n+6c_n \hspace{2mm},c_0=1 & \quad \end{cases}  
Jordan Canonical Form
Let A be a square matrix defined byA=(231121132) A =\begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write $A^n$ \hspace{2mm} in term of n.    
Jordan Canonical Form
Let A be a square matrix defined by A=(131351331) A =\begin{pmatrix}-1&3&-1\\ -3&5&-1\\ -3&3&1\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
Jordan Canonical Form
Let A be a square matrix defined by A=(3232) A = \begin{pmatrix}3&2\\ 3&-2\end{pmatrix} (a) Find the characteristic polynomial of A. (b) Show that A is diagonalizable then diagonalize it. (c) Write An A^n in term of n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT