Solution
(a) Find the characteristic polynomial of A.
⟹P(λ)=∣A−λI∣=λ2+λ−12=(λ−4)(λ+3λ)
Therefore, the characteristics polynomial is
P(λ)=∣A−λI∣=(λ−4)(λ+3λ)
(b) Show that A is diagonalizable then diagonalize it.
since, P(λ)splitted⟹A is diagonalizable.
∙Forλ1=4 ⟹E4=span{(21)}
∙Forλ2=−3 ⟹E−3=span{(−13)}
Therefore, A=PDP−1 where
P=(21−33),D=(400−3),P−1=(73−717172)
(c) Write An in term of n.
since. A=PDP−1⟹An=(PDP−1)n=PDnP−1
⟹An=(21−33)(4n00(−3)n)(73−717172)
=(73⋅22n+1+3(−3)n73⋅4n−3(−3)n722n+1−6(−3)n74n+6(−3)n)
Therefore, An=(73⋅22n+1+3(−3)n73⋅4n−3(−3)n722n+1−6(−3)n74n+6(−3)n)
Answer
Therefore.
a). P(λ)=∣A−λI∣=(λ−4)(λ+3λ)
b). A=PDP−1 where P=(21−33),D=(400−3),P−1=(73−717172)
c). An=(73⋅22n+1+3(−3)n73⋅4n−3(−3)n722n+1−6(−3)n74n+6(−3)n)